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Abstract
&Keymessage Non-stochastic portfolio optimization of for-
est stands provides a good alternative to stochastic mean-
variance optimization when available statistical data is in-
complete. The suggested approach has a theoretical back-
ground in the areas of robust optimization, continuous
multicriteria decision-making, and fuzzy theory.
Resulting robust portfolios only show slight economic
losses compared to the efficient frontier of a stochastic
optimization.
& Context Economic optimization addressing diversification
in mixed uneven-aged forest stands is a useful tool for forest
planners.
& Aims The study aims to compare two approaches for opti-
mizing rotation age cohort portfolios under risk. Rotation age

cohorts emerge from age-based regeneration-harvesting oper-
ations simulated for two tree species: Picea abies and Fagus
sylvatica.
& Methods The first optimization approach is a stochastic
mean-variance approach. The second is a non-stochastic opti-
mization approach, which has rarely been applied to optimize
tree species composition and the distribution of harvested tim-
ber over many periods. It aims at relatively good solutions,
even if the deviation from the initially assumed return is very
high. The objective function for both approaches is sensitive
to the selection of various harvesting periods for different parts
of the stand. For the stochastic approach, the objective func-
tion maximizes the annuitized net present value (economic
return) for specific levels of risk by allocating area proportions
to harvesting periods and tree species. In the non-stochastic
approach, the allocation of area proportions instead minimizes
the maximum deviation from the greatest possible economic
return among many uncertainty scenarios (non-stochastic
approach).
& Results Portfolios from both approaches were diverse in
rotation age cohorts. The non-stochastic portfolios were more
diverse when comparedwith portfolios from the efficient fron-
tier, which showed the same standard deviation. However,
P. abies clearly dominated the non-stochastic portfolios, while
stochastic portfolios also integrated beech to a greater extent,
but only in very low risk portfolios. The economic losses of
the non-stochastic portfolios compared to the efficient frontier
of the mean-variance approach lay between 1 and 3% only for
different levels of accepted risk.
& Conclusion The non-stochastic portfolio optimization over
a large uncertainty space is so far uncommon in forest science,
yet provides a viable alternative to stochastic optimization,
particularly when available data is scarce. However, further
research should consider ecological effects, such as increased
resistance against hazards of conifers in mixed stands.
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1 Introduction

Forestmanagers are confrontedwithmany risks and uncertainties.
The frequency of natural disturbances like storms, fire, and land-
slides, damage from insects such as bark beetles, and stand fail-
ures could even increase in the context of climate change
(Coumou and Rahmstorf 2012; Intergovernmental Panel on
Climate Change 2014; Petoukhov et al. 2016; Rahmstorf and
Coumou 2011). The impacts of disturbances represent an enor-
mous economic loss for European forests (Hanewinkel et al.
2012). Consequently, forest decision makers will face great chal-
lenges.Many forest science studies conclude that continuous cov-
er forestry may be the best way to compensate for natural distur-
bances and uncertainties (Ciancio et al. 2006; Huth and Wagner
2013; Knoke 2009; Pukkala 2016; Schütz 2001). There is a wide
range of continuous cover forestry models, and these manage-
ment systems are spread, albeit sparsely, all over the world
(Pommerening 2004; Pretzsch et al. 2015). The three key aspects
of continuous cover forestry are as follows: the avoidance of clear
cutting, highly structured stands and site-adapted or native tree
species (Davies et al. 2008). These characteristics all lead to more
resistant forest stands and consequently the stands are better able
to withstand disturbance. There are also many other benefits of
continuous cover forestry, such as maintaining high biodiversity,
providing continuous economic revenues, and providing ecosys-
tem services, such as erosion control (Pommerening 2004; Schütz
2001). However, it is still unclear if the consideration of uncer-
tainty would actually support uneven-aged silviculture.

Several approaches exist to consider uncertainty in forest
science studies. Yousefpour et al. (2012) reviewed the
decision-support tools available to help foresters handle the
upcoming challenges. Thus, in the past, several financial tech-
niques to quantify and consider these risks and uncertainties
have been developed to integrate them into management de-
cision-making. In forestry, most economic approaches to con-
sider risks and uncertainties have drawn on the stochastic
expected utility framework or option pricing theory.
Referring to this framework, three stochastic approaches that
draw on the expected utility framework are stochastic domi-
nance, downside risk, and mean-variance models. Stochastic
dominance differentiates between efficient and inefficient out-
comes. However, it cannot rank two efficient options, like two
profitable management systems. Downside risk and mean-
variancemodels use the standard deviation of economic return
to quantify risk. The two approaches differ in that a downside
risk model considers risk as a possible result that is worse than
a pre-defined threshold, whereas a mean-variance approach

maximizes return for pre-defined levels of risk (Hildebrandt
and Knoke 2011).

Option pricing models focus on the desirable part of uncer-
tainty (i.e., positive deviations from the expected value). They
assume that decisions may be adjusted during the considered
time horizon and hence quantify the “value” of flexibility
(Wilson and Baker 2001; Yemshanov et al. 2015). For in-
stance, Yemshanov et al. (2015) demonstrated the differences
in opportunity costs of land-use change when calculated con-
ventionally and when calculated by an option pricing model.
They found that afforestation as a land-use change reduces
management flexibility, which may well explain the reluc-
tance of landowners to convert agricultural land use to forest
plantations. However, we shall keep in mind that the reluc-
tance of landowners to convert agriculture towards forestry is
also a matter of psychological and social factors, such as gen-
eral attitude to property and ancestors.

Robust optimization is another important approach for in-
cluding uncertainties in management decisions (Gabrel et al.
2014). Knoke et al. (2015) have shown the relation between
robust optimization, when adopted as a constraint-based ver-
sion (Ben-Tal et al. 2009), and the MINMAX formulation of a
Goal Programming problem (Tamiz et al. 1998). This robust
MINMAX approach, however, does not belong to the before
mentioned framework of expected economic utility, because it
is non-stochastic. Still, this approach uses a specific utility
function, where a high maximum difference between the ideal
achievement level and the level actually achieved contributes
to the decision makers’ disutility. The optimization of such
MINMAX utility functions implicitly means minimizing
non-achievement (Romero 2001). Following this approach,
our non-stochastic programming procedure will implicitly
minimize the difference between maximum achievement
levels for economic return and actually achieved levels among
all considered combinations of the uncertain input parameters
(uncertainty scenarios). In this study, the economic return is
expressed as the annualized net present value (NPV) of differ-
ent rotation age cohorts (annuities). Furthermore, we will
show that this approach can also be regarded as a MAXMIN
problem in a fuzzy theory framework, and wewill point out its
differences from information-gap decision theory.
Consequently, the introduced portfolio approach has strong
theoretical support from various research areas.

To the best of the authors’ knowledge, there are hardly any
similar portfolio based studies of non-stochastic optimization
in forest management decision-making. One of the rare exam-
ples for robust optimization (however, not based on portfolio
theory) is Palma and Nelson (2009), who optimized harvest
scheduling with 15 different management options (all of
which involved clear-cutting), and included volume and de-
mand as the uncertain variables. The objective function was to
maximize the revenues from harvesting and at the same time
maximize the value of the remaining stand. They compared
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the “difference in the decisions’ stability” (Palma and Nelson
2009) of the robust optimization and a deterministic model,
and concluded that the costs of increasing robustness were
acceptable. In the present study, we apply non-stochastic, ro-
bust portfolio optimization as a tool to analyze a
possible transformation of an even-aged forest stand to
continuous cover forestry to improve and facilitate
optimization-supported decisions. We compare this new, ro-
bust approach to optimize the composition and management
of a forest stand with the classical mean-variance optimiza-
tion, as introduced by Roessiger et al. (2011, 2013) for a
similar analysis. The starting point in our study and in the
Roessiger et al. (2011) study is an even-aged forest, for which
the management is not pre-defined. The applied optimization
approach will suggest whether or not a clear cutting of a pure
stand is a preferable management strategy, or if the distribu-
tion of regeneration harvests over many periods in a mixed
forest is the better option, if uncertainties have to be addressed.

1.1 Short overview about existing literature

The starting point for testing our non-stochastic optimization
approach for its appropriateness to optimize forest manage-
ment was Markowitz’ (1952, 2010) modern portfolio theory
(MPT). This stochastic method considers the portfolio return
as a random variable and integrates risk as the standard devi-
ation of the expected portfolio return. The portfolio’s standard
deviation is derived from the sum of all return covariances,
which implicitly assumes normally distributed economic
returns of the individual portfolio options. In the literature,
many applications of classical portfolio theory to support
decision-making around environmental questions can be
found. The frequent use underlines the importance of optimi-
zation tools for analyzing benefits and trade-offs of diversifi-
cation. Production fields such as agriculture (Abson et al.
2013) and fisheries (Edwards et al. 2004), as well as land-
use management (Knoke et al. 2013), economic analyses un-
der uncertainty, risk diversification effects, and the valuing of
biodiversity (Figge 2004; Raes et al. 2016) have all been sup-
ported, among other methods, by a mean-variance approach.
Many applications can also be found in forest science
(Hildebrandt and Knoke 2011). Neuner et al. (2013), for ex-
ample, tested the applicability of portfolio theory to support
the choice of tree species in private forest estates. Hahn et al.
(2014) used data from a Bavarian municipal forest to demon-
strate how uncertainties, and risks could be integrated into
management plans through mean-variance portfolio optimiza-
tion. This optimization model also leads to an optimal treat-
ment of the forest stands for small-scale, private forest owners
who are strongly risk-averse (Roessiger et al. 2011). The mod-
el presented by Roessiger et al. (2011) will be used as a refer-
ence for the results of our suggested non-stochastic portfolio
approach.

The portfolio optimization method is also used to demon-
strate how carbon sequestration of forests could be optimized
and how future resilient forest stands, in the context of climate
change, should be established and managed. Dragicevic et al.
(2016) optimized wood production, which also leads to a
higher carbon sequestration and results in portfolios similar
to those that are directly optimized for carbon sequestration.
Weng et al. (2013) calculated the future composition of black
spruce (Picea mariana) reforestations that were optimized to
maximize yield and minimize risk, with models based on the
portfolio theory. The authors balanced growth and stability
and compared them to common truncation-deployment ap-
proaches. While both approaches produced similar results,
the portfolio theory approach was recommended for optimi-
zation if yield stability is important.

The studies mentioned above have optimized, for example,
portfolios for fish populations, biodiversity, genes, land use,
different tree species, and forest stand types. They quantify the
advantages of management decisions under uncertainty using
mathematical programming approaches, such as non-linear
programming, and can integrate further management aspects
like carbon sequestration. However, many studies have iden-
tified limitations of classical mean-variance portfolio optimi-
zation approaches.

Classical portfolio optimization requires information on all
return covariances among the considered assets (Knoke et al.
2015). In contrast to decisions about investments in financial
stocks, where data is delivered from stock markets, financial
data is scarce when considering natural ecosystems and their
management. If insufficient data is available, data must be
generated through simulation techniques, such as Monte
Carlo Simulation (MCS) (to start), to integrate uncertainties
like timber price fluctuations, disturbance events, changing
management, or afforestation costs (e.g., Roessiger et al.
2011). To generate the necessary economic data, information
on past costs and pricesmust be used, with the assumption that
the future will mimic the past. The standard deviation of each
portfolio asset, the correlations between all assets, and the
resulting standard deviation of the whole portfolio are all
needed for the optimization (Markowitz 1952). In contrast,
the non-stochastic optimization can be performed based on
very limited data (Knoke et al. 2015).

In addition to their high data demand, stochastic optimiza-
tion approaches may be limited by the fact that the composi-
tion of the resulting portfolios is highly sensitive to changes in
the initial parameters (see Beinhofer 2009 for forestry
examples and Goldfarb and Iyengar 2003 for selection of
financial portfolios). Such changes may be necessary, for ex-
ample, because of (systematic) estimation errors in means,
variances, and covariances (Ziemba and Mulvey 1998). For
example, climate change can alter growth conditions, which
can in turn change the optimal composition of the portfolio
(Härtl et al. 2016).
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To circumvent these disadvantages, Knoke et al. (2015)
applied a non-stochastic optimization model to agricultural
land-use portfolios. This new approach could be advantageous
for forest management because it requires less data and no
information about correlations between the single assets.
Additionally, the resulting portfolio weights (in our study,
the allocated area to each rotation age cohort) may be less
variable when risk aversion changes. The reduced information
requirement of the non-stochastic optimization approach is a
particular advantage in a forestry environment, where data is
often scarce or incomplete.

It is important to note that the mentioned robust optimiza-
tion differs from sensitivity studies, which are “post mortem
tool(s)” (Ben-Tal and Nemirovski 2000, p. 413): robust opti-
mization incorporates uncertainties already into the optimiza-
tion procedure and results in an optimal solution that only
changes slightly across varying initial coefficients (Lin et al.
2004). Uncertainty scenarios cover the variation in the coeffi-
cients a priori and constraints guarantee acceptability of the
achieved solution over a wide range of input coefficients.
Thus, over the wide range of considered parameter perturba-
tions, results stay acceptable (Kangas et al. 2008; Knoke et al.
2015). In contrast, sensitivity analyses evaluate the possible
range of results by a variation of the input parameters only ex
post, after having obtained the optimal solution (Albadvi and
Koosha 2011; Ben-Tal and Nemirovski 2000).

1.2 Structure of the paper

Our study therefore aims to test the applicability of the
outlined novel approach in forest management planning and
decision-making in the context of a possible transition from
even-aged forestry to continuous cover forestry. The study
uses data sets representing up-to-date growth data to identify
advantages and shortcomings of the non-stochastic optimiza-
tion. By comparing the results of the non-stochastic model to a
traditional portfolio based efficient frontier, we investigate
possible losses through non-stochastic optimization and the
differences in the derived portfolio composition. Finally, we
identify promising fields for future research.

The main research question asked in the present study is as
follows: How do stand composition and management differ
when comparing a classical portfolio optimization with a non-
stochastic, robust portfolio optimization? The paper is divided
into five sections. The first (current) section gives a brief over-
view of forest optimization modeling and the integration of
risks and uncertainties. The next section presents the classical
portfolio approach to forestry. The new forest optimization
methodology is then described in Sect. 3. In Sect. 4, both
methods are applied to a specific case study. Results are com-
pared in the fifth section. In the final section, we discuss our
results and draw conclusions.

2 Material and methods

2.1 Classical portfolio approaches in forestry

Previous studies applying the mean-variance approach have
used the economic return of each portfolio asset and correla-
tions between them, using the standard deviation of the eco-
nomic return of the portfolio as the uncertainty measure. To
start our study, we formulate a particular problem for optimiz-
ing the composition of a forest stand regarding different rota-
tion age cohorts and tree species as follows

maxE YLð Þ ¼ ∑i∈LE yið Þai ð1Þ
subject to

SL≤SA
SL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∈L∑ j∈Laia jcovi; j

q

∑i∈Lai ¼ 1
covi; j ¼ ki; jsis j
ai≥0

Rotation age cohorts refer to the planned felling age for a
specific part of the forest stand expressed as a percentage
fraction of the stand area. The maximization of the economic
return (€ ha−1year−1) of the portfolio (YL) is reached by an
optimal composition of the allocated land areas (ai) to single
rotation age cohorts (i), created at only one or at various pe-
riods, for different tree species. We considered the harvesting
and thus the regeneration timings as rotation age cohorts and
assume that regeneration harvests will stimulate natural regen-
eration (adapted game populations provided). For example,
allocating a percentage fraction of 10% to the rotation age
cohort Norway spruce (Picea abies) with age 80 years (Sp
80) means that 10% of the forest area will be harvested
consisting of spruce at age 80 years. This area will be regen-
erated at this age (see Table 1). The set of all considered
rotation age cohorts, which in this study is composed of eight
for Norway spruce and nine for European beech, is denoted by
L. All rotation age cohorts provide a specific economic return,
in this study an average annual payment (annuity), depending
on harvesting timing and tree species (yi). The expected return
E(yi) is calculated through averaging 10,000 MCS. MCS in-
clude uncertainties such as wood price fluctuations, distur-
bance events, and changing management costs (see
Roessiger et al. 2011 and Sect. 2.3.1 for details on the
simulation approach). The standard deviation (si) of the
returns of the rotation age cohorts and correlations ki , jbetween
the different rotation age cohorts i and jwere used to calculate
covariances (cov

i , j
) and the standard deviation of the whole

portfolio (SL). SA is a pre-defined standard deviation and hence
the accepted maximum risk level, which is used to calculate
the efficient frontier. The efficient frontier consists of portfo-
lios with maximal economic return for a certain level of risk,
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expressed by a specific standard deviation. The allocated rel-
ative percentage fractions must sum to 1 and cannot be nega-
tive values.

2.2 Non-stochastic portfolio approach

The non-stochastic optimization model applied in this paper
follows a suggestion by Knoke et al. (2015), who referred to
an example of robust optimization introduced by Ben-Tal
et al. (2009) and used the approach for optimizing agricultural
land-use portfolios. This non-stochastic approach allows for
linear programming, which makes sure that the global opti-
mum will be found. The approach is adapted for the purpose
of the present study as follows

max YL ¼ ∑i∈Lyiai ð2Þ
subject to

∑i∈Lysi
*ai≥max ysið Þ−βU

*δmax; min∀s∈S
ysi ¼ yi � usi
0≤βU ≤1
∑i∈Lai ¼ 1
ai≥0

YL is the annuity of the entire forest stand portfolio
(€ ha−1year−1) when applying the nominal return coefficients.
Each of the single rotation age cohorts i has a nominal annuity,
yi, (€ ha−1year−1). This nominal annuity used for the present
study is represented by the mean of the results from a MCS

with 10,000 repetitions. For the following optimization pro-
cess, a possible minimum or maximum annuity, ysi, was cre-
ated for each rotation age cohort i through subtracting or
adding a possible deviation, usi (€ ha−1year−1), from or to yi.
This deviation can be viewed as an uncertainty factor and is
expressed in this study as

usi ¼ �m*si m ¼ 1:0; 1:1; 1:2;…; 2:8; 2:9; 3:0ð Þ ð3Þ

wherem is a multiplication factor which defines the size of the
uncertainty space, and thus, usi is the maximal possible
deviation from the initial annuity coefficient, yi. The range
of 1.0 to 3.0 for this factor m was chosen to investigate the
impact of the size of the uncertainty spaces on the portfolio
composition. A manager with a lower degree of risk aversion
could choose a smaller multiplication factor m than a more
risk averse one. The upper limit was taken from Knoke et al.
(2015) who considered three times the standard deviation as
adequate for simulating a very large uncertainty space. The
multiples 1.0 up to 3.0 in 0.1 steps were used to create the
deviations (usi) (the higher the uncertainty factor usi, the great-
er the level of risk aversion and the more uncertainties like
price fluctuations, stand failure, or silvicultural treatment are
included). By creating all possible combinations of the 17
possible positive or negative deviating annual payments, ysi,
of the given rotation age cohorts (eight spruce and nine beech
rotation age cohorts), i, a great number of uncertainty scenar-
ios, s (217 = 131,072), were generated. Within each uncertain-
ty scenario, there exists a maximum annuity (€ ha−1year−1),
max(ysi), a minimum annuity, min(ysi), and consequently a
maximum range, δmax , min, between both. S is the set of all
131,072 uncertainty scenarios generated for this study. Each
uncertainty scenario is represented by an appropriate con-
straint in Eq. 2. Optimization was also carried out with only
negative deviations from the nominal values, which were con-
sidered as the upper limits, to investigate the effect of only
allowing for downside deviations.

The variables ai are percentage fraction (i.e., area propor-
tions) allocated to the considered rotation age cohorts (deci-
sion variables), similar as in Eq. 1. The maximum annuity and
the maximum range, δmax , min, of each uncertainty set define
ultimately the exact constraints for the optimization process. A
control factor, βU, to scale “the degree to which the constraint
has to be relaxed” (Knoke et al. 2015) to achieve the optimal
portfolio is integrated in the formula (see below for a more
detailed look at this control factor).

The uncertainty spaces are multidimensional boxes considered
to model the possible return variability and return combinations
for all rotation age cohorts. The extreme combinations of the
deviated expected annuities (maximum-maximum, maximum-
minimum, minimum-maximum and minimum-minimum) form
the corners of the boxes, when only two options are considered.
All possible combinations of the parameters and consequently all

Table 1 Annuities in € ha−1year−1and standard deviations of all
rotation age cohorts

Rotation age
cohort (i)

Average annual
payment (annuity)

Standard
deviation

Norway spruce 30 (Sp30) 150 100

Norway spruce 40 (Sp40) 313 138

Norway spruce 50 (Sp50) 390 161

Norway spruce 60 (Sp60) 397 168

Norway spruce 70 (Sp70) 380 167

Norway spruce 80 (Sp80) 351 160

Norway spruce 90 (Sp90) 312 147

Norway spruce 100 (Sp100) 281 137

European beech 40 (Be40) −145 7

European beech 50 (Be50) −62 18

European beech 60 (Be60) −11 25

European beech 70 (Be70) 21 30

European beech 80 (Be80) 36 32

European beech 90 (Be90) 47 34

European beech 100 (Be100) 49 34

European beech 110 (Be110) 46 33

European beech 120 (Be120) 45 33
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possible outcomes in the form of annuities are implicitly included
in these square uncertainty scenarios. The obtained solutions have
to be feasible for the border of the uncertainty set in order to be
feasible for all possible combinations. For this reason, no exact
distribution of the possible values is needed to support the robust
optimization approach and thus the method may be applied for all
distribution types.

2.2.1 Control factor βU

The control factor, βU, is a measure of the greatest distance from
the best possible result which we have to tolerate to obtain ac-
ceptable results for all uncertainty scenarios. This distance de-
pends, inter alia, on the size of the considered uncertainty set,U,
and thus on the multiplication factor for the standard deviation.
This control factor is minimized iteratively to the lowest possible
value for a given size of the uncertainty space. For all βU smaller
than a specific threshold value, the problem will become infea-
sible. The control factor βU can range between 0 and 1. If it is
close to 0, only annuities close to the maximum annuity possible
for each uncertainty scenario will be accepted; the imposed con-
straint on the acceptable annuity does not allow lower annuities.
In contrast, if the control factor tends to 1, only close tominimum
annuities are required by the forest manager for the optimization
process.

According to Knoke et al. (2015), re-arranging the con-
straint in Eq. (2) leads to the following consideration (Eq. 4)

Di ¼ max ysið Þ−∑i∈Lysi
*ai

δmax;min
ð4Þ

Di quantifies each deviation of actually achieved return
from the highest possible return, standardized by means of
the distance between maximum andminimum return. It would
now be possible for the optimization to directly minimize the
variable Di to get the smallest control factor (Knoke et al.
2015), following the below mathematical formulation.

min max Dð Þ½ �

max ysið Þ−∑i∈Lysi
*ai

δmax;min
≤D ∀s∈S

ð5Þ

This formulation is equivalent to a MINMAX problem of a
Goal Programming approach (Romero 2001; Tamiz et al.
1998). The constraint in Eq. 5 is helpful to control the achieve-
ment of a global minimum, because the objective function
(Eq. 4) is no longer smooth. Actually, our optimization
followed Eq. 5; however, it was tested manually if a proposed
minimum D could still be reduced, without violation of any
constraint. By checking this, we made sure that local minima
have been avoided.

2.2.2 Fuzzy theoretic interpretation

Replacing “crisp” objective functions and constraints by
“fuzzy” versions is an opportunity to introduce fuzzy theory
into programming methods. Fuzzy theory is an approach to
consider uncertainty or ambiguity in general. It may also in-
form forest management decisions (Kangas and Kangas 2004;
Pasalodos-Tato et al. 2013). A fuzzy formulation of Eq. 2 can
be achieved as follows (Eq. 6) (see, for example, Mendoza
and Sprouse 1989)

∑i∈Lyi
*ai≳Yo

∑i∈Lysi
*ai≳max ysið Þ ∀s ϵ S

∑i∈Lai ¼ 1
ai≥0

ð6Þ

Here, approximate formulations (≳) replace the precise
“greater than or equal to” and “less than or equal to” signs.
In Eq. 2, Yo would represent the maximum nominal economic
return of the portfolio, which needs to be achieved only ap-
proximately. Fuzzy problems, therefore, do not look for pre-
cise best solutions, but rather for “good enough” solutions. To
solve Eq. 6, it is essential to form membership functions, in
our case, one for each of the uncertainty scenarios, s. These
would impose admissible deviations from the desired target
levels (aspiration levels) and allocate either 0 (constraint not
met) or 1 (constraint met) or achievement level values be-
tween 0 and 1 (constraint partly met) to the economic returns
achieved under a specific uncertainty scenario. Equation 7
shows a possible formulation for a membership (ms) function

in our case. Using YLs ¼ ∑
i∈L

ysi
*ai for the return of the forest

portfolio under various uncertainty scenarios, s, we can write
for a specific uncertainty scenario

ms YLsð Þ ¼
1 for YLs ¼ max ysið Þ

1−
max ysið Þ−YLs½ �

δmax;min
for max ysið Þ > YLs > min ysið Þ

0 for YLs ¼ min ysið Þ

2
664

3
775 ð7Þ

In Eq. 7, the maximum possible deviation from the re-
quired target level is δmax , min. An appropriate objective func-
tion to solve this fuzzy problem is then a MAXMIN function
(Eq. 8).

M ¼ max min ms YLsð Þ½ �f g
YLs−min ysið Þ

δmax;min
≥M ∀s ϵ S ð8Þ

This means that we look for the minimum membership
level among all membership functions, with one function for
each uncertainty scenario, s. Then, we maximize this mini-
mum membership level, with M being the final maximum
worst-case membership level. This is equivalent to minimiz-
ing the maximum deviation from the desired target levels
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(MINMAX problem), as described under Sect. 2.2.1. Thus,
we may also consider our non-stochastic optimization prob-
lem as a fuzzy formulation of the constraint-based portfolio
approach.

Both interpretations as a Goal Programming problem and as
a fuzzy theoretic problem underline the theoretical appropriate-
ness of the robust, non-stochastic optimization approach.

2.2.3 Comparison with info-gap decision theory

Information-gap decision theory (info-gap from here
onwards) is another non-stochastic alternative to address un-
certainty. This theory considers the result of a decision in form
of a reward function, R(q, u) (Ben-Haim 2006). This reward
depends on the decision, q, which may be the allocation of
area fractions to forestry options, and on the uncertainty, u.
The uncertainty may be described by various so-called infor-
mation-gap uncertainty models. To improve the immunity of a
decision against adverse uncertainty, an immunity function is
maximized with the aim to always satisfy the minimal require-
ments for all u.

α q; rcð Þ ¼ max α : min
u∈U α;~u

� �R q; uð Þ

0
BB@

1
CCA≥rc

8>><
>>:

9>>=
>>;

ð9Þ

where α q; rcð Þ is the greatest level of uncertainty which would
still be consistent with a reward no less than the critical reward,
rc, which would be demanded by the decision maker (Ben-Haim
2006). One may say that the info-gap theory strives to find the
greatest decision-specific size of a possible uncertainty set that
would still allow for acceptable rewards (Knoke 2011).

The mathematical concept of the info-gap theory is in fact
quite straight forward (Hayes et al. 2013) and quite useful for
many analyses. However, the requirement of a critical reward
makes the analysis somewhat local (Sniedovich 2012). The
hypothetical uncertainty set found by the info-gap analysis
will most likely only be a subset of the true, but unknown,
uncertainty set. The true reward (consequence) of a decision
could still be outside the uncertainty set consistent with the
optimal info-gap decision. Nevertheless, one might still be
interested in the performance of a decision, if their true reward
is outside the uncertainty set describing the neighborhood of
the assumed/estimated reward. In other words: If the critical
reward is not met, we might still want a relatively good per-
formance, even under such circumstances.

To avoid considering too small uncertainty sets, our meth-
od considers sets of uncertainties of various sizes for econom-
ic return (input) coefficients of each single potential portfolio
component, which form a common uncertainty space for all
considered uncertainty scenarios. We demand that the maxi-
mum deviation to the best possible solution is minimized for

all combinations of return coefficients included in these un-
certainty spaces. However, we are not limited by demanding a
fixed critical reward. This is different from the before de-
scribed info-gap perspective, where uncertainty in the neigh-
borhood of the assumed/estimated economic return would be
considered.

2.3 Application of the two different portfolio approaches
to a forest management example

2.3.1 Data

The calculations of the annuities, which we used for both of
the optimization processes, were generated following the
Roessiger et al. (2011) model. Fluctuations of the wood prices,
harvesting and afforestation costs, and the risk of stand failure
were simulated to generate a more or less realistic variation in
possible returns. However, deviating from Roessiger et al.
(2011), the yield was based on a data set published by
Pretzsch et al. (2014), which was prepared for economic con-
siderations by Hofmann (2014) (see Table 2). This data set led
to 17 rotation age cohorts. In our study, regeneration costs
were assumed for Norway spruce, 2000 € ha−1; and
European beech, 3000 € ha−1. The time series for wood prices,
adopted from the Bavarian state forests (Bayerisches
Staatsministerium für Ernährung, Landwirtschaft und
Forsten 2015), were updated for the year 2014. The adjust-
ment of expected gross revenues to fluctuation in timber
prices was achieved by multiplying a quotient with the gross
revenues representing timber prices of the reference year
2014. The quotient was formed by dividing the annual main
assortment prices (mid-diameter Sp 25–29 cm and Be 30–
34 cm), i.e., the weighted price considering all quality classes,
by the average timber price for these assortments of the whole

Table 2 Expected exploitable wood volume in m3 per hectare
(understood as roundwood without bark in cubic meters per hectare) for
different age classes for Norway spruce (Sp) and European beech (Be)

Age class Sp (m3 ha−1) Be (m3 ha−1)

30 276

40 435 15

50 558 125

60 659 215

70 744 290

80 818 356

90 883 414

100 941 466

110 513

120 556

Volume is calculated with a growth model from Pretzsch et al. (2014) and
prepared for economic analyses by Hofmann (2014)
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time series. The resulting wood price quotients, see Table 3,
were then used to calculate the random deviations of the gross
revenues from the reference values in year 2014 (see Table 4).
With the help of a MCS with 10,000 repetitions and a
bootstrappingmethod for the random choice of the wood price
year, the means of the annuities of each rotation age cohort
and the associated standard deviation, which is the measure
for risk in the study, were calculated. The annuities were cal-
culated for all 17 rotation age cohorts using a discount rate of
1%. This discount rate forms a platform to start from.
However, during sensitivity tests, we used alternative discount
rates. The annuities and standard deviations of the different
rotation age cohorts and tree species can be seen in Table 1
and were used as the input data for the stochastic and the non-
stochastic optimizations. In summary, we can say that we used
a completely new data set compared to Roessiger et al. (2011).

To carry out the stochastic and non-stochastic optimization
of the portfolios, a large-scale solver (What’s Best! 2011) from
Lindo Systems, Inc. was used as an add-in toMicrosoft Excel.

2.3.2 Case study data

For the case study, the stand area covered by spruce (Sp) may
be harvested and regenerated totally or in part at the ages 30,
40, 50, 60, 70, 80, 90, and 100 years and beech (Be) at the
ages 40, 50, 60, 70, 80, 90, 100, 110, and 120 years. These 17
possible rotation age cohorts all have their own average annu-
ities and standard deviations (Table 1). With potential stand
regeneration starting at age 30 years and ending at age
120 years, the approach allows a regeneration process poten-
tially extending over 80–90 years, which may be considered a
more than sufficient period to transition from even-aged to
uneven-aged management at the stand scale (e.g., Knoke
and Plusczyk 2001).

The lower limit for the 17 rotation age cohorts was chosen
to reflect the stand age at which the two tree species first
produce marketable wood volumes: Sp 30 and Be 40. The
upper limit was set to reflect common practices in central
Europe (Sp 100) and for beech (Be 120) to acknowledge that,
due to mainly firewood production, the economic return does
rather decrease after year 100 (Table 1). For the non-stochastic
optimization, 131,072 (217) different uncertainty scenarios
were used and implemented as constraints. Depending on
the factor m to control the size of the uncertainty space, we
conducted 21 robust portfolio optimizations: one for each of
the different values of m. For the stochastic optimization, we
performed 33 portfolios, beginning with an unrestricted level
of risk for the whole portfolio and reducing this level step by
step to the lowest achievable risk level while the annuities
were always maximized for the given levels of risk. For the
stochastic optimization process, the simulated correlation co-
efficients, depending on the portfolio shares, were used (see
Table 5).

Table 3 Real wood price development between 1975 and 2014 based
on the data set from the Bavarian state forest

Year Norway spruce
wood
price in € per cubic
meter

European beech
wood
price in € per cubic
meter

Quotient
Sp

Quotient
Be

1975 43 43 0.758 0.662

1976 46 43 0.798 0.664

1977 50 50 0.876 0.766

1978 44 56 0.768 0.861

1979 44 60 0.772 0.925

1980 61 67 1.077 1.031

1981 52 73 0.919 1.121

1982 52 73 0.913 1.131

1983 48 73 0.843 1.118

1984 47 72 0.815 1.105

1985 57 72 1.006 1.107

1986 53 72 0.927 1.101

1987 57 72 1.004 1.109

1988 58 72 1.009 1.111

1989 66 74 1.152 1.140

1990 64 75 1.114 1.160

1991 36 54 0.634 0.827

1992 31 69 0.538 1.068

1993 40 71 0.698 1.090

1994 53 68 0.935 1.052

1995 56 76 0.987 1.166

1996 51 72 0.896 1.103

1997 52 69 0.915 1.057

1998 58 69 1.017 1.069

1999 61 72 1.063 1.105

2000 52 74 0.911 1.133

2001 58 72 1.023 1.114

2002 58 66 1.014 1.020

2003 57 63 0.996 0.965

2004 53 60 0.929 0.924

2005 59 53 1.032 0.814

2006 63 52 1.106 0.807

2007 67 58 1.182 0.892

2008 62 65 1.092 1.001

2009 63 60 1.105 0.925

2010 69 54 1.201 0.829

2011 79 60 1.382 0.931

2012 85 66 1.489 1.014

2013 87 64 1.531 0.990

2014 90 64 1.574 0.993

Prices are weighted by different quality assortments from the main assort-
ments for spruce (Sp) (25–29 cm) and for beech (Be) (30–34 cm) for each
year. The quotient is calculated by dividing these mixed annual prices of
Sp and Be of each year by the means of Sp and Be price over the whole
time range
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To compare the portfolios obtained from stochastic and
non-stochastic optimization, we computed the expected eco-
nomic return and standard deviation for the non-stochastic
portfolios assuming a “mean-variance world”. Annuities and
standard deviations of these non-stochastic portfolios were
then compared with corresponding portfolios from the effi-
cient frontier, which had the same standard deviation as the
non-stochastic portfolio.

3 Results

The portfolios obtained from non-stochastic optimization
were in general less variable compared to those resulting from
stochastic optimization. That means that the non-stochastic
portfolios corresponded only to a quite limited range of stan-
dard deviations and average economic return. While stochas-
tic optimization suggested efficient portfolios over a range of
standard deviations from ±10 (average economic return −60
Euro ha−1 year−1) to ±168 (average economic return 400
Euro ha−1 year−1), non-stochastic optimization suggested
portfolios corresponding to ±83 (average economic return
292 Euro ha−1 year−1) to ±115 (economic return 374
Euro ha−1 year−1). For better comparison of the results of the
optimization approaches, we focused on the portfolios associ-
ated with identical standard deviations. Standard deviations
resulted from the uncertainty space sizes one to three times
the standard deviation.

3.1 Comparison of the results of the optimization
approaches

The results consist of a series of stochastic and non-stochastic
forest management portfolios, displaying the shares of the
rotation age cohorts across different levels of accepted/
considered economic risks (see Figs. 1 and 2). In general,

Table 4 Wood prices in € per cubic meter (roundwood without bark)
for Norway spruce and European beech have been obtained through
prices weighted by assortment shares for the year 2014

Diameter ranges/class (cm) Norway spruce European beech

10–14 56 63

15–19 74 63

20–24 83 63

25–29 90 63

30–34 91 56

35–39 92 64

40–49 92 73

50–59 93 83

≥60 93 89

Industrial wood 55 48
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the mean-variance optimized portfolio becomes less diverse
as the level of accepted economic risk increases. The mini-
mum risk among the here compared portfolios was a standard
deviation of 83, at which point 10 rotation age cohorts (8 Sp
and 2 Be) were included in the portfolio (Fig. 1). At this level
of the economic standard deviation, still 91% of the stand’s
area were covered by Norway spruce. The share of 9% of
European beech decreased with a higher tolerated economic
risk until it disappeared completely (SA = 92). Land initially
allocated to a range of various rotation age cohorts of Norway
spruce narrowed as accepted risk increased and finally only
rotation age cohorts for Norway spruce with harvesting at 40,
50, 60, 70, and 80 remained. The value of the objective func-
tion changed from 299 to 384 € ha−1 year−1 as the level of
accepted risk rose from 83 to the maximum of 115 for the
rotation age cohort of Norway spruce 40, 50, 60, 70, and 80.

The non-stochastic optimization approach integrated max-
imally 13 rotation age cohorts, if the uncertainty space was
very large, as shown in the left column of Fig. 2. The resulting
portfolios were generally more diverse, and rotation age co-
horts were distributed more equally compared with those ob-
tained from stochastic optimization, if portfolios with identical
standard deviations were compared. For example, for a stan-
dard deviation of ±105, the non-stochastic portfolio contained
seven rotation age cohorts, all comprising between 11 and
17% of the stand area, while the stochastic portfolio included
also seven rotation age cohorts for this standard deviation,
however, covering between 2 and 25% of the stand area.
The land allocations within these non-stochastic portfolios
were thus distributed more evenly for changing uncertainty
levels compared to those from stochastic optimization.
Spruce clearly dominated the portfolios across all levels of
uncertainty. Beech only became part of the portfolio for stan-
dard deviation lower than ±92, thus using usi = 2.8∗si or
higher. The shares of Sp 100, Sp 90, Sp 80, and Sp 40
remained relatively stable for a range of standard deviations
between ±83 and ±106 (which is related to 1.8∗si≤usi ≤ 3.0∗si)

and showed allocated land percentage fractions between 9 and
15%. Sp 50 in general is very stable over the whole range of
changing uncertainty spaces: it rises from 12% for the lowest
standard deviation to 24% of stand area allocated to this rota-
tion age cohort for the highest uncertainty. The percentage
fraction of rotation age cohort Sp 60 decreased most with
increasing size of the uncertainty spaces. For the smallest un-
certainty factor considered here (standard deviation of ±115),
still six rotation age cohorts were included in the portfolio (Sp
40–Sp 90). Spruce rotation age cohort harvested with 30 years
were only included in the portfolios under a higher uncertainty
factor m (Fig. 2). Across the different risk levels, the non-
stochastic portfolios provided an average annual return be-
tween 292 € and 374 € ha−1 year−1. If the uncertainty factor
was further reduced (reflecting a less cautious perspective),
the non-stochastic optimization portfolio becomes less di-
verse, with only slightly higher annuities, but increasing stan-
dard deviation. In summary, we may conclude that non-
stochastic portfolios become more diverse, if decision makers
expect increasing uncertainties, represented by larger sizes of
uncertainty spaces considered. This means that considering
rather large uncertainties is supportive to uneven-aged forestry
strategies. If forest owners would rather expect uncertainties
of limited size, they would rather tend to an age class system,
although still with a diversified harvesting spread over several
periods.

The difference in the composition of forest portfolios cal-
culated by the stochastic and robust optimization approach
can be seen in Figs. 1 and 2. As an example, we look at the
portfolios for a standard deviation of ±83 (left-hand column)
and ±115 (right-hand column). The robust portfolios are more
diverse than the stochastic ones. For cautious decisionmakers,
expecting high uncertainty and thus using a high uncertainty
factor of usi equal to 3 times the standard deviation, this port-
folio consists of 13 different rotation age cohorts (8 spruce and
5 beech shares), while the corresponding stochastic portfolio
includes 10 rotation age cohorts. The stochastic portfolio only
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Fig. 1 Forest management portfolios, composed of Norway spruce (Sp)
and European beech (Be), forming the efficient frontier in a mean-
variance optimization. Provided are maximal average annual payments
for a certain standard deviation (SA). Standard deviations correspond to

the uncertainty space sizes from the non-stochastic optimization. As some
of the uncertainty space sizes result in very similar standard deviation,
rounded standard deviations occur as duplicates

 45 Page 10 of 16 Annals of Forest Science  (2017) 74:45 



shows two beech rotation age cohorts (Be 90 and Be 100) for a
standard deviation of ±83, while the non-stochastic portfolio
comprises five beech rotation age cohorts for this standard
deviation. Even if the five beech rotation age cohorts together
have only about 11% allocated land, the spruce rotation age
cohorts are distributed rather regularly in this conservative
non-stochastic optimized portfolio.

We also considered only downside deviation for the non-
stochastic optimization approach. Figure 3 depicts the follow-
ing consequences: for an uncertainty space of 1 times the
standard deviation, thus a high level of risk acceptance, the
standard deviation (122), and annuity (386 € ha−1year−1) are
slightly higher than under the double-sided optimization;
however, there are two rotation age cohorts less included in
the portfolio. For the high risk aversion, accordingly, in an
uncertainty space set up with three times the standard devia-
tion, the differences are even more significant. Just one
European beech rotation age cohort (Be 100) appears in the
portfolio, however, with a percentage fraction area of almost
40% (see Fig. 3). Consequently the standard deviation (64)
and the annuity (234 € ha−1year−1) are clearly lower for con-
sidering one-sided deviation. The median uncertainty space

(two times the standard deviation) resulted in quite similar
percentage fraction areas compared to the two-sided optimi-
zation. The standard deviation (108) and the annuity (363
€ ha−1 year−1) only show slight differences to the portfolio
optimized with the double-sided deviation.

3.2 Performance of robust portfolios in a mean-variance
context

Figures 1 and 2 demonstrate the differences in allocated port-
folio weights (shares of our rotation age cohorts) between the
two optimization approaches. Here we investigated the size of
the losses that could potentially occur when using non-
stochastic approaches. For each level of standard deviation
associated with a non-stochastic portfolio, we calculated the
(stochastic) portfolio that maximizes the expected return and
hence is a member of the efficient frontier. Figure 4 compares
the efficient frontier formed by the mean-variance optimized
portfolios with the portfolios from the robust optimization
(1.0 ≤m ≤ 3.0). Thus, the annuities of the non-stochastic opti-
mization were compared to the highest possible annuities
(from the stochastic optimization) for the same level of risk.
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Fig. 2 Forest management portfolios, composed of Norway spruce (Sp)
and European beech (Be), derived for large deviations considered (left
m = 3.0, corresponds to a standard deviation of 83) and smaller deviations
(right m = 1.0, corresponds to a standard deviation of 115) with their

corresponding uncertainty sets, expressed as the standard deviation.
Represented are portfolios for all uncertainty space sizes between 1.0 ≤
m ≤ 3.0 increasing in 0.1 steps; thus, each column shows a different
uncertainty space
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non-stochastic optimization approaches with one-side (downside)
deviation to double-side (downside and upside) deviation. Compared

are the uncertainty spaces one, two and three times the standard
deviation, which result in standard deviations of 83, 97, and 115 from
the left to the right
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The robust optimization portfolios achieved slightly lower
average economic returns than those from mean-variance op-
timization. The smallest difference, however, was just 1%,
representing a loss of 3.94 € ha−1 year−1for an uncertainty
space of m = 1.0 times the standard deviation. The highest
potential economic loss caused by a non-stochastic optimiza-
tion portfolio still amounted to under 3%. This was the case at a
level of uncertainty of usi between 2.7∗si (standard deviation of
±97) and 3.0∗si (standard deviation of ±83). This corresponded to
a loss of around 8–9 € ha−1 year−1 compared to the efficient
portfolio derived from the mean-variance approach. The greater
the considered uncertainty spaces, not only the higher are the
possible economic losses of a non-stochastic approach, but also
the more diverse are the resulting portfolios.

3.3 Sensitivity analysis of the discount rate

Sensitivity analysis for a discount rate of 2% resulted, in
general, in lower annuities for Norway spruce and
European beech. While Norway spruce rotation age co-
horts attained average annuities between 108 and 272
€ ha−1 year−1 with Sp 30 as the lowest and Sp 50 as
the highest, all European beech rotation age cohort annu-
ities were negative. The rotation age cohort Be 90 with an
average annuity of −15 € ha−1 year−1 was even the best
option and Be 40 (−153 € ha−1 year−1) the worst. Within
the rotation age cohorts calculated with a discount rate of
1%, only Be 40–Be 60 had negative average annuities
(see Table 1). Besides the lower annuities, also the rota-
tion age cohort with the highest average annuities changed
to the lower rotation age cohort in each case for the
higher discount rate of 2%. As a consequence for the
portfolios, the annuities of the portfolios decreased for
both stochastic and non-stochastic optimization. In addi-
tion, the European beech rotation age cohorts were
completely excluded from the portfolios because of the
low and even negative rotation age cohort annuities. The
general structure of the non-stochastic portfolios, however,
hardly changed.

4 Discussion and conclusion

The results show that non-stochastic portfolio optimization may
support forest management decisions successfully, even when
various rotation age cohorts are part of the optimization problem.
Comparedwith a classical stochastic optimization, which needs a
comprehensive set of input data (particularly covariances be-
tween all considered portfolio elements), we could show that
the less data demanding non-stochastic optimization achieved
quite excellent results, which underline the significance of this
new approach when data is scarce. In contrast to the approach
used by Knoke et al. (2015) for optimizing agricultural crop-
lands, our approach considered various rotation age cohorts and
with this various periods, through which we extended the agri-
cultural study by Knoke et al. (2015).

Portfolios calculated with the non-stochastic approach showed
only slightly lower average annual return compared to portfolios
from the efficient frontier. The economic losses lie between 1 and
3%, but these portfolios are relatively diverse, including between
six and 13 rotation age cohorts. The basic results obtained are
comparable to those of Knoke et al. (2015). The non-stochastic
portfolios of both studies include various assets and change only
moderately under changing levels of assumed risk. Economic
losses in the land-use study from Knoke et al. (2015) were, with
a difference of 2 to 4% compared to the efficient frontier, slightly
higher than those of the present study. Comparing the non-
stochastic portfolios with those forming the efficient frontier and
thus using the standard deviation as the reference can be seen
critically. However, even if this method assumes that the results
from the stochastic portfolio optimization are seen as the absolute
maximum, it is a straightforward way to compare economic
performance given an identical uncertainty, even if the
uncertainty measure has some weaknesses.

Our paper used expected growth data from Pretzsch et al.
(2014) for Norway spruce and European beech. The portfolios
resulting from the stochastic optimization approach with this
updated data compared to the portfolios obtained byRoessiger
et al. (2011), calculated with the same model but different
data, showed basically the same pattern of decreasing diversi-
ty with increasing risk acceptance. Due to the high wood
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Fig. 4 Economic performance of
robust portfolios (obtained from a
non-stochastic optimization)
compared to the efficient frontier
of a mean-variance optimization
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prices in the year 2014, our reference year for calculating the
wood price, the general price level is significantly higher and
consequently the annuities and the standard deviations of the
single rotation age cohorts were also higher. This led to a
change in the rotation age cohort with the maximum average
return: in the present study, Sp 60 is the rotation age cohort for
the highest expected return, while this was Sp 80 given the
data used by Roessiger et al. (2011). The fact that our study
did not integrate returns from thinning operations did not
strongly affect the composition of the portfolios, as a compar-
ison to the results of Roessiger et al. (2011) shows. These
earlier net revenues from thinnings could, however, positively
affect the shares of European beech in the non-stochastic port-
folios because of the advantageous low standard deviation of
the beech rotation age cohorts. Thinnings could also lead to
increased proportions of European beech if returns from thin-
nings, such as for fuel wood, would increase the expected
return. Results of the optimizations based on updated data
suggest that the reference year and length of the time series
for wood prices are more important for the stochastic optimi-
zation than for the non-stochastic approach. For comparison,
we also calculated the non-stochastic portfolios with the pre-
vious data set, used by Roessiger et al. (2011). The general
findings that stochastic portfolios showed strong changes in
their composition and an increasing share of beech under de-
creasing levels of accepted risk were more evenly distributed
within spruce were not altered, even for the here applied 1%
discount rate. One consequence, however, was the high annu-
ities for spruce. However, using a discount rate of 2%, beech
did not reach positive annuities as we considered investment
costs of establishing the plantation, contrary to the study of
Roessiger et al. (2011). Beech was thus completely excluded
from the non-stochastic portfolios under all risk levels for an
increase in the interest rate. However, the structure of spruce
rotation age cohorts of the non-stochastic portfolios hardly
changed when using an interest rate of 2%.

The appropriate multiplication factor for the standard
deviation to construct uncertainty spaces should be investi-
gated in more detail. The size of the uncertainty space
should relate to the forest manager’s degree of caution,
which could be approximated by his/her degree of risk
aversion. Holt and Laury (2002) investigated the impact
of the degree of risk aversion on decision-making with
the example of a simple lottery. An adequate portfolio for
each level of risk aversion can therefore serve as a man-
agement support tool in forest decision-making. However,
the appropriate multiplication factor and consequently the
size of the uncertainty space within the non-stochastic ap-
proach do not influence the composition of the portfolio as
much as the changing risk levels in the stochastic approach.
Thus, with a moderate size of the uncertainty space of 2
times the standard deviation, stable portfolios can be
achieved for further planning.

A related point is the shape of the uncertainty space. For greater
precision, the shape of the uncertainty space could be changed to
conic, polyhedral, convex, elliptical, or other forms (Bertsimas and
Brown 2009). Within these multidimensional spaces, we assume
that each combination of return coefficients is equally likely.
Changes in the shape of the uncertainty spaces could reflect more
likely combinations of return coefficients. However, these alterna-
tive shapes or multidimensional spaces demand more information
on correlations between the economic returns and complicate the
calculations (Ben-Tal et al. 2009). For a practical linear program-
ming problem, the square shape used in this paper is useful, but
modifying this shape could help map the distribution of possible
economic returns more exactly, resulting in a more precise model.
Approaches to achieve this can, for example, be seen in the studies
of Goldfarb and Iyengar (2003) and Ben-Tal and Nemirovski
(2002). Regardless, the economic losses of the robust non-
stochastic model compared with the efficient frontier are, despite
the simple shape of the uncertainty factor sets, only small. The
opportunity to use linear programming, which ismade possible by
ignoring covariances, did not imply any great disadvantages in the
performance of the non-stochastic model.

The non-stochasticmodel is, in its present form, not feasible for
extremely high numbers of constraints, because of technical lim-
itations of the software used, Microsoft Excel, and the exponen-
tially rising number of scenarios with increasing number of op-
tions considered as portfolio components. Consequently, we were
limited to 17 rotation age cohorts to solve the linear problem
because all 131,072 constraints have to be solved simultaneously.
For example, with 18 options for the optimization process, the
working memory of Microsoft Excel 2010 cannot perform the
calculations. Therefore, limitations for the optimization process
in this study were technical in nature. For this study, 17 options
were sufficient; however, it would be preferable in future optimi-
zations to relax this restriction by using options to reduce the
number of uncertainty scenarios that have to be considered. This
is especially the case if further studies focus on single-tree
optimization.

The almost complete exclusion of beech from the portfolio
composition by non-stochastic optimization was not as sur-
prising as it may have seemed at the first glance. Because of
the very low economic return for European beech only ex-
tremely risk-averse decision makers would choose beech ro-
tation age cohorts from a purely economic point of view. In
the non-stochastic model, European beech was only part of
portfolios with very large uncertainty spaces and thus low
standard deviations of ±83 to ±92. However, only when
disregarding interactions between tree species (Griess and
Knoke 2013; Knoke and Seifert 2008; Liang et al. 2016;
Pretzsch et al. 2010), climatic change (Neuner et al. 2015),
and other aspects, such as biodiversity (Gamfeldt et al. 2013)
or multiple ecosystem services (Knoke et al. 2016), different
rotation age cohorts of pureNorway spruce appear appropriate
for achieving sustainable forest stands.
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As mentioned in Sect. 1, the practical application example
of the new approach refers to an even-aged forest stand, which
will be transformed into an uneven-aged mixed forest, if un-
certainties are important. The results have practical relevance
particularly for forest owners with only small properties. Here,
risks and uncertainties are very important, because very low
economic performance cannot be compensated by other parts
of a larger forest property. The results obtained may be used
for consultancy of such smaller forest owners. They show that
starting quite early with the regeneration of a forest stand and
then carrying out many regeneration harvests of similar sizes
over several decades may be effective in buffering against
uncertainties. In the context of climate change and higher
economic risks of even-aged spruce monocultures (Neuner
and Knoke 2017) which affects especially small-scale forest
owners, who at least in Germany are used to prefer rather pure
and even-aged Norway spruce stands (Roessiger et al. 2011),
such management options that provide frequent and stable
economic returns are quite attractive. However, the model
shall in the future research also be transferred to rotation age
cohorts referring to diameter ranges and thus be adaptable to
already existing uneven-aged forest stands. One possible ap-
proach for this transformation could be a matrix model ap-
proach inspired by Roessiger et al. (2016). The number of
options, however, will clearly play a key role in the feasibility
of the combination of these techniques.

Especially for these small-scale forest owners, a further
advantage of applying an uneven-aged mixed forest manage-
ment system is the high flexibility towards timber price
fluctuations and assortment harvesting. Thus, harvest
intensity can be adjusted to current market states. Prestemon
and Wear (2000) found out that owners are sensitive to fluc-
tuating prices particularly if the changes are short-term fluc-
tuations. Knoke and Wurm (2006) stated that especially for
European beech, a flexible harvesting is attractive. This could
be useful when more stable uneven-aged mixed forests (in-
cluding beech) resist to calamities, and thus, forest owners
can bridge drops in wood prices. Additionally, forest owners
of mixed uneven-aged forests can decide on harvesting cer-
tain assortments (Brazee and Mendelsohn 1988; Prestemon
and Wear 2000). If pulpwood prices are high, rotation age
cohorts like Sp30 or Sp40 can be harvested, whereas if the
demand for lumber is highest, he/she can decide to cut Sp 80,
for example.

To conclude, this study demonstrates the high-performance
of a robust optimization approach for forest management plan-
ning. Results from the optimization with this model are prom-
ising, especially for optimizations with scarce data. However,
further research is needed to reduce the number of constraints/
uncertainty scenarios, to modify the size and shape of the
uncertainty spaces, and to integrate ecological effects among
tree species and other biodiversity aspects into management
decisions.
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