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Abstract
Aim of study: Modelling of forest growth and dynamics has focused mainly on pure stands. Mixed-forest management lacks 

systematic procedures to forecast the impact of silvicultural actions. The main objective of the present work is to review current 
knowledge and forest model developments that can be applied to mixed forests.

Material and methods: Primary research literature was reviewed to determine the state of the art for modelling tree species mixtures, 
focusing mainly on temperate forests.

Main results: The essential principles for predicting stand growth in mixed forests were identified. Forest model applicability in 
mixtures was analysed. Input data, main model components, output and viewers were presented. Finally, model evaluation procedures 
and some of the main model platforms were described. 

Research highlights: Responses to environmental changes and management activities in mixed forests can differ from pure stands. 
For greater insight into mixed-forest dynamics and ecology, forest scientists and practitioners need new theoretical frameworks, 
different approaches and innovative solutions for sustainable forest management in the context of environmental and social changes. 
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Introduction

Forests are complex, open, long-term systems 
with fuzzy boundaries and key elements that change 
over time. Disturbances influence forests intensively, 
adding complexity to their dynamics. Models allow 
scientists to analyse and interpret complex, non-linear 

systems (Sverdrup & Stjernquist, 2002), but mode-
lling forest dynamics presents several challenges. To 
fully understand forest dynamics, especially in mixed 
forests, we need models that incorporate essential as-
pects such as emergent properties, multiple and multi-
scale interactions or spatial, functional and structural 
variability.  The vast amount of very detailed infor-
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ma   tion currently available about forests does not ne-
cessarily provide a better understanding of ecosystem 
structure and functioning as a whole (Fabrika & 
Pretzsch, 2013).

Several silvicultural foundations, such as site pro-
ductivity, stability or tree growth allocation (between 
species and at individual level) are challenged by 
global change but remain unknown for mixed forests. 
For example, recent works on yield distribution have 
shown that species interactions in mixtures generate 
emergent properties and modify the stand environ-
ment, function and structure (Pretzsch et al., 2015). 
Along with risk assessment, mixed-forest modelling 
should generate flexible outputs for different ecosys-
tem services provided by different mixtures.

Models can provide useful information for opera-
tional forestry but the information needed by fo rest 
managers depends on management intensity and the 
ecosystem services being managed. In their current 
form, less than one-third of the existing forest growth 
models consider mixing effects or can be used to 
predict growth in mixed-species stands (Pretzsch et 
al., 2015). 

From an operational perspective, models need to be 
developed for use in an entire portfolio of silvicul  tu-
ral strategies, including sustainability criteria and indi-
cators. Thus, the participation of many types of end-
users is a key element for analysing complex systems 
with diverse values. Information and models to iden-
tify sustainable, multifunctional forest management 
options are needed for mixed forests especially 
(Hase nauer, 2006; Rennolls et al., 2007; Mendoza & 
Vanclay, 2008). To be useful for operational forestry, 
models should be clearly specified, tested for predic tion 
accuracy, embedded in management procedures and 
provide easily understandable results, well-documen-
ted processes and user-friendly interface (Teufel et 
al., 2006). Clear objectives defined by the relevant 
stakeholders (owners, managers, general public…) 
should precede any silvicultural treatment of forest 
stands. In even-aged monocultures, applying proper 
silvicultural procedure(s) to achieve stated objectives 
is much easier than in closer-to-nature, complex, multi-
species stands. A new generation of relevant models 
for mixed forests is needed to address important is-
sues such as: (1) the conditions for successful natural 
regeneration (natural succession) in multi-species 
stands (Schütz, 1999; Diaci, 2006; Bauhus et al., 2013); 
(2) the growth dynamics of coexisting tree species in a 
given mixed stand compared to their monocultures; (3) 
how neighbouring species affect silvicultural treat ments 
(cleaning, tending, thinning, regeneration cutting) and 
overall forest  stability; (4) the natural tree mortality ra te 
in mixed stands and how it can influence the remaining 

trees; (5) the probabilities of natural disturbances 
occurring in mixed-stands; (6) below-ground proces-
ses and relationships between root systems of va -
rious tree species (Rothe & Binkley, 2001; Schmid & 
Kazda, 2001, 2002; Shanin et al., 2015), along with 
their impact on above-ground species performance; (7) 
converting single-species stands to multi-species stands 
and the requirements of all tree species in the future 
stand composition (Kenk & Guehne, 2001; O’Hara, 
2001) and (8) the ecosystem services provided and the 
trade-offs between them under different silvicultural 
conditions.

Forest ecosystems stretch from the atmosphere to 
the lowest layers of the soil. Therefore, forest systems 
are very complex and diversified, with many factors 
and interactions that affect stand dynamics. Models 
transfer the complexity and interactions of multiple 
forest components into a comprehensible structure that 
can then be refined, step by step. A model integrates 
the modeller’s knowledge and understanding of the 
system to (1) test overall understanding of a system and 
(2) predict future forest development or deduce past 
evolution. 

The modelling concept (Kurth, 1994) classifies 
models as empirical, process-based and structural. 
They can be further classified according to temporal-
hierarchical level (Pretzsch, 2001), hierarchical-spatial 
level (Lischke, 2001), and other parameters (Munro, 
1974; Shugart, 1984; Vanclay, 1994; Houllier, 1995; 
Liu & Ashton, 1998; Franc et al., 2000; Porte & 
Bartelink, 2002; Pretzsch et al., 2008). Based on the (i) 
modelling object, (ii) spatial resolution, (iii) temporal 
resolution and (iv) concepts to be applied, ten model 
categories can be defined (Lischke, 2001 modified by 
Fabrika & Pretzsch, 2013 and Fabrika et al., 2018): (a) 
eco-physiological tree models (Hauhs et al., 1995), (b) 
functional-structural plant models (Prusinkiewicz & 
Lindenmayer, 1990), (c) big leaf models (Landsberg 
& Waring, 1997), (d) empirical distance-dependent 
tree models (Ek & Monserud, 1974), (e) empirical 
distance-independent tree models (Wykoff et al., 
1982), (f) tree gap models (Botkin et al., 1972), (g) 
cohort gap models (Bugmann, 1996), (h) distribution 
models (Clutter, 1963), (i) stand models (Assmann & 
Franz, 1965) and (j) biome models (Holdridge, 1947). 

As a major driver of forest resource availability, 
forest productivity remains a fundamental concern 
in forestry. In practice, low-cost operational tools for 
predicting forest site productivity are needed to inform 
tree species selection, optimal silvicultural guidelines 
and timber yield forecasts for local to regional forest 
planning. From the first simple yield tables compiled 
from past empirical data, we have advanced to 
develop individual tree growth models that handle 
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competition between trees and crowns in even-aged, 
uneven-aged and mixed stands. They also incorporate 
emergent properties (such as self-thin ning or optimum 
basal area) and complex interactions (such as over or 
under-yielding). Currently, mechanistic, process-based 
models are being developed to better address mixed-
species stand dynamics and the impact of environmental 
changes on forest growth. With climate change comes 
increased uncertainty. Models that cover a range of 
possible developments provide usable information for 
forest management planning and decision-making. 
Furthermore, despite the impor tance of non-timber 
forest products and services, fo rest management 
and planning methods and models in Europe have 
traditionally been orien ted towards wood production. 
Consequently, foresters lack models for multifuncional 
managed forests or for op timizing management to 
address demands other than wood production. All these 
different needs promote hybridisation of modelling 
approaches, especially process-based, empirical and 
eco-physiological models, and lead to serialized use 
of downscaling or upscaling procedures. Downscaling 
involves shifts in comparison of the initial scale (closer 
to single individual level) towards finer resolution in 
space and shorter time inter vals. Upscaling moves from 
shorter to longer time in ter vals, from finer to coarser 
spatial units and from single cell or organs to the 
community level.

The objectives of this review are to: 1) revisit 
approaches to modelling mixed-species dynamics, 2) 
assess the data requirements and data sources needed 
to parametrize existing models, 3) review the mixed-
forest modelling components, 4) identify model eva-
lua tion methods, and 5) review existing models and 
model platforms in Europe. This review comple-
ments and expands that of Pretzsch et al., (2015) by 
including model classification based on the respecti-
ve modelling concept, a discussion about the sui-
tability of different modelling approaches for mi xed 
forests and a description of different model platforms 
that can provide greater insight regarding mixed stand 
ecology and dynamics as well as the development of 
management prescriptions.

Approaches to predicting mixed forest 

Forecasting mixed forest development is much 
more complex than for pure stands, due to the need 
to express interspecific interactions resulting from 
the resource demands, space filling requirements and 
growth patterns of the different tree species involved in 
the mixture. Mixed stands are often more structurally 

complex than pure stands (Pretzsch et al., 2016) and 
may create more vertically structured forests based 
on the varying growth rates of individual tree spe cies. 
Thus, mixed forests generally use stand space (both 
horizontally and vertically) better than pure stands. 
Pretzsch (2009) has shown that in mixed stands, basal 
area development significantly deviates from the Ass-
mann theory (Assmann, 1961), depending on stand 
density, and that incremental interactions depend on 
species proportions in mixed tree species (Pretzsch et 
al., 2010, 2013). From a methodological point of view, 
the best way to model mixed-stand development is to 
take the complex 3D space into account (horizontally 
and vertically) and include species identity and size 
as drivers along with stand productivity. Among the 
many approaches to identifying the effects of species 
composition on stand growth, forest modellers usually 
rely on four: (i) averaging pure stand characteristics, 
(ii) introducing multipliers to look at mixing effects, 
(iii) introducing competition measurements that in  clu-
de species identity or (iv) using an eco-physiological 
approach (Pretzsch et al., 2015).

Weighted average of pure stand features

When no information is available for mixed-forest 
growth, stand development is simply assumed to follow 
the weighted average of pure stands. Appropriate pure 
stand models should thus be selected for each species 
in the mixture, along with suitable site indices and 
equations for thinning effects. The outcomes from the 
pure stand models (i.e., growth and yield characte-
ris tics, stand density) are weighted by mixing the 
proportions to obtain an average of the expected per-
for mance of mixed forests. However, this approach 
does not consider possible species interactions in the 
mixture, and thus cannot properly account for real 
growth competition or facilitation. Wiedemann (1942) 
used this approach to develop yield tables for mixed 
stands of Norway spruce and European beech.

Using multipliers to consider mixing effects

By comparing pure-stand model forecasts with 
mi xed-stand permanent plot data (fine-tuned with 
data from close permanent pure stand plots), mixing 
eff ects can be assessed as multipliers (Y = m *Ŷ).  
As the growth and yield characteristics of forest 
monocultures are well known at both stand and tree 
level, the multiplier (m) represents the deviation of 
specific species response in mixed stands compared 
to pure stands. This approach has been applied 
for quantifying the growth response to different 
environmental conditions such as site fertility, insect 

growth 
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attacks or fertilization (Wykoff et al., 1982; Monserud 
& Sterba, 1996; Komarov et al., 2003). However, the 
underlying processes remain largely unknown.

Including competition indices in the model

When the availability of growing space is included 
in growth models, the 2D or 3D forest structure and 
the competitive status of the individual trees can be 
quantified using competition indices (CI). CI help to 
adjust growth and mortality probability for the given 
projection period. As stand structure and tree growth 
are linked to CI, mixing effects could lead to signifi-
cant deviance in stand development forecasts. 

To integrate the different effects of the species on 
the mixture, distance-dependent or species identity 
CI can be used to look at: (i) the specific differential 
response of species to growing area requirements 
and (2) the response of each species to competition 
for above- and below-ground resources. Models 
by Södeberg (1986), Hasenauer (1994), Köhler & 
Huth (1998), Hynynet et al. (2002), Pretzsch (2002), 
Hynynen & Ojansuu (2003) Pukkala et al. (2009) , 
or Elfving (2011a and 2011b) are examples of this 
approach.

Eco-physiological process approach

A different approach is to directly consider the 
actual resource partitioning between species in the 
mixture. Here, competition for resources is simulated 
for each individual tree or cohort and the species-mi-
xing impact is assessed through feedback between 
species-specific spatial structures and tree growth 
as well as between a tree’s individual environment 
(resource availability) and its dynamics (growth, 
survival probability, …). Species mixing modifies 
resource distribution (light, water, nutrients) and 
uptake within the stand, which can have a huge 
impact on growth rates at tree and stand level. Models 
based on this approach have been developed for 
different forest types and mixtures (Kimmins et al., 
1990a, 1990b, 1999; Kellomäki & Vaisanen, 1997; 
Grote & Pretzsch, 2002; Rötzer et al., 2009). The eco-
physiological approach to modelling mixed stands 
can be applied using big leaf models, frequency-ba sed 
stand models and population (species) stand models. 
When no information about eco-physiological 
processes in mixed stands is available, the first two 
approaches (weighted average and multipliers) can 
be used to adjust known eco-physiological responses 
from pure stands. However, eco-physiological tree 
properties that emerge in mixed but not mono-specific 
stands are neglected.

Input data for simulating mixed forests

Mixed-forest modelling requires more input data be-
cause it deals with more complex objects; as modelling 
detail increases, input data also increases. Input data 
requirements vary according to the modelling approach 
used. Empirical models require biometric parameters 
of trees or stands and/or a generalized site description 
(based on site classification or other parameters) as 
input. Process-based models require inputs that are direc-
tly linked to eco-physiological and ecosystem processes. 

The model category also affects the type of input 
data. At the community level, for example, species 
composition, stand density, and tree species properties 
(mean diameter, mean height, basal area or volume) 
are required, while tree diameter, tree height and crown 
properties are required at the organism level. For 
distance-dependent models, tree positions in the stand 
are also needed. This is true for both empirical and 
process-based models. For the latter, additional data are 
required: leaf area index and total biomass per species 
for models at the population level and leaf area of sin gle 
trees, biomass of individual tree parts, and spatial dis-
tribution (2D or 3D) for models at the organism level.

Several tools have been developed to generate 
different types of input data, including reconstruction 
of stand structure (Brandtberg, 1999; Surový et al., 
2004; Klemmt & Tauber, 2008) and reproduction 
(Pommerening, 1999; Pommerening et al., 2000), 
structure generators (Pretzsch, 1993; Nagel & Biging, 
1995; Merganič & Sterba, 2006), site generators (Kahn, 
1994; Fabrika, 2005), weather generators  such as 
WGEN, (Richardson & Wright, 1984), SIMMETEO 
(Geng et al., 1986, 1988), TAMSIM (McCaskill, 
1990), CLIMGEN (Clemence, 1997), MET&ROLL 
(Dubrovský, 1997), LARS-WG (Seme nov et al., 
1998), AAFC-WG (Hayhoe, 2000), MARKSIM 
(Jones & Thornton, 2000), RUNEOLE (Adelard et 
al., 2000), WM2 (Hansen & Mavromatis, 2001) or 
CLIMA (Donatelli et al., 2009) and nume rical weather 
prediction models such as ALADIN (Huth et al., 2003). 
Models that account for horizontal and vertical stand 
structure are more suitable for mixed stands, because 
they capture data on interactions among trees. Thus, 
tools for structure reconstruction, reproduction and 
generation are particularly useful for modelling mixed-
species stands.

Components of growth models 

Modelling for forest ecosystem management 
(including mixed-forest modelling) should integrate 

using forest growth models
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different scales (temporal and spatial) and various 
disciplines for balanced prediction of different forest 
ecosystem services (Pretzsch et al., 2008). As already 
mentioned, mixed forests present distinct features (self-
thinning, allometry, etc.), so data from pure stands 
must be evaluated before it is transferred. However, 
model components from pure stands may serve as 
starting points for modelling different aspects of mixed-
stand forest development (mortality, competition, 
growth, nutrient cycle, thinning interventions, felling 
approaches or regeneration establishment). 

As an example, competition indices with modified 
coefficients that depend on the species or group of 
species to which some competitors belong to can be 
used. Indices based on the vertical light cone method 
(Pukkala & Koloström, 1987; Pukkala, 1989; Biging 
& Dobbertin, 1992; Pretzsch, 1995) are particularly 
suitable for calculating the competitive pressure of 
individual competitors on the subject tree. Significant 
improvements can be achieved when the interactions of 
different tree species are considered in tree increment 
values. In the SILVA model (Biber et al., 2013), for 
instance, the mixing effect is included as a multiplier. 

Thinning interventions are one of the most impor-
tant and common silvicultural treatments in forestry. 
Their integration into forest models is crucial because 
they shape forest structure (Schall et al. 2018). Once 
a thinning intervention is defined (type, selection criteria, 
intensity, rotation) it should not be difficult to simulate; 
the model only requires the definition of the trees to be 
removed from the stand. However, thinning alters stand 
structure, environment (microclimate, nutrient cycle, 
etc.) and dynamics (growth and mortality). Therefore, 
it is necessary to consider both thinning algorithms and 
thinning response functions.

Algorithms for modelling thinning interventions 
based on different tree selection criteria, including tree 
species, are already well described (Fabrika & Ďurský, 
2005; Fabrika & Pretzsch, 2013). At stand and size 
frequency levels, thinning intervention simulations 
require control functions to predict changes in stand 
structure for a given thinning rule (Bravo-Oviedo et 
al., 2004; Mora et al., 2012). Simulating thinning 
operations in mixed forests is challenging because the 
results of a given thinning rule are generally expressed 
in a simplified way and may vary drastically from 
actual dynamics in complex forests (Söderbergh & 
Ledermann, 2003). Thus, real data from different 
thinning schedules and species proportions for a given 
mixture would be needed to effectively parametrize 
con trol functions. Lack of adequate thinning indices 
for mixed stands, particularly for aspects related to 
species composition, presents another difficulty (del 
Río et al., 2016). 

Many empirical distance-dependent tree models 
might inherently predict tree response to thinning from 
the change in stand structure, whereas population stand 
models usually require insertion of thinning response 
functions (Weiskittel et al., 2011). Generally, thinning 
response is considered in forest models with modifiers 
reflecting the thinning type, timing, and intensity in 
the main driver functions of the model. Changes in 
species proportion would also be required for mixed 
stand models. 

Besides timber production and economic criteria in 
simulations of forest growth and dynamics (expressed 
through volume growth, basal area, assortment classes, 
net present value-NPV, etc.) (Mäkelä et al., 2000; 
Lindner et al., 2002; Rollin et al., 2005; Pukkala, 2015), 
there is increasing demand for model predictions that 
address issues such as biodiversity (Purves & Pacala, 
2008; Vilà et al., 2013; Forrester & Tang, 2015; Lafond 
et al., 2015; Reyer et al., 2015), carbon fluxes and 
sequestration (Backéus et al., 2005; Schmid et al., 
2006; Bravo et al., 2008; Seidl et al., 2008; Schwenk 
et al., 2012; Collalti et al., 2014; Fischer et al., 2014; 
Mika & Keeton, 2015; Borys et al., 2016), water 
yield (Cademus et al., 2014), groundwater recharge 
(Fürstenau et al., 2007) and albedo-related radiative 
forcing (Lutz et al., 2016). This information is needed 
to better understand trade-offs among forest ecosystem 
services in multifunctional approaches for sustainable 
forest management (Mäkelä et al., 2012). 

Density-dependent mortality is an essential com-
ponent of forest dynamics. As with other model com-
ponents, there are more detailed models for pure stands 
than for mixed-species forests. Mortality or survival are 
usually modelled using a logistic function to estimate 
the probability that a tree will die or survive after a 
certain period of time, depending on the event measured. 
Mixed-forest approaches include separate modelling 
of individual tree mortality/survival for each species 
(Temesgen & Mitchell, 2005, Weiskittel et al., 2016) or 
modelling the response of groups of species according 
to similar functional characteristics, such as growth 
rate or shade tolerance (Zhao et al., 2004). Upscaling 
from individual tree to stand-level mortality has been 
indicated as an important issue that is dependent on 
data quality (Monserud et al., 2005). For mixed-species 
forests, species-specific mortality functions or the spe-
cies-specific threshold in the logistic model can be used 
as expansion factors for upscaling (Weikittel et al., 
2016).

Forest growth and yield models depend on the 
relationship between dendrometric variables such as 
height and crown attributes related to diameter at breast 
height, under the assumption of constant allometry. 
However, intra- and interspecific variability of allo-
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metric coefficients is common in trees (Duursma et al. 
2010), leading to intra- and inter-competition effects 
that might be related to stress tolerance and functional 
traits, such as shade tolerance and wood density (del 
Río et al., 2019, Forrester et al., 2018, Ducey, 2012). 

Evaluation of forest models

For mixed and pure forests alike, growth model 
performance must first be evaluated in terms of 
biological interpretation and logical behaviour, 
according to the current knowledge of the system. 
Model evaluation is rather context-dependent and 
relative (Shifley et al., 2017); the complex and 
biological consistency of models for mixed-stand 
dynamics should reflect individual tree behaviour 
for component species and stand-level responses that 
frequently are not the simple aggregation of individual 
trajectories. Precision and accuracy must be tested 
against independent data, adding another important 
caveat to the evaluation process: stand conditions, 
including species composition and proportions can 
vary greatly in space and time. In situations where true 
independent data is lacking or benchmark values are 
scar ce, re-sampling techniques such as cross-validation, 
jack-knife techniques and boot-strapping are preferred 
(Vanclay & Skovsgaard, 1997). Soares et al. (1995) 
identified five steps for evaluating forest models: (1) 
theoretical and biological assessment, (2) analyses of 
statistical properties, (3) characterization of errors, (4) 
bias and precision testing and (5) sensitivity analyses 
of model parameters. Sensitivity analyses study how 
the output variation of a model can be qualitatively 
or quantitatively apportioned to different sources of 
variation (Saltelli et al., 2008). 

Quantifying uncertainty in forest resource projec-
tions is a complex challenge and very important in 
forest management and decision-making. (Schadauer 
et al. 2017). There are a few studies on the precision 
of growth predictions (Gertner & Dzialowy 1984, 
Mowrer and Frayer 1986, Gertner 1987, Mowrer 
1991, Kangas 1997, Saltelli et al., 2008; Fortin et al., 
2009;), but uncertainty in model projections is still 
not generally addressed. Though single-tree-based 
models have proven particularly suitable for mixed-
stand simulations and have gained popularity, forest 
management decisions are usually made at stand level. 
Error propagation from tree to stand level, as well as 
uncertainty quantification are ignored (Zhang et al., 
1997). The different sub-models that build up single-
tree-based models also contribute to error sources 
(Kangas, 1999) and uncertainty, which tends to increase 
with projection length as prediction errors from prior 

periods accumulate (Kangas, 1997). Uncertainties are 
even higher in models conceived for complex forests, 
due to mixing effects like overyielding and inter-
specific interactions that are absent in mono-specific, 
even-aged stands (Pretzsch et al., 2015). To tackle the 
uncertainty problem, estimators based on likelihood 
or pseudo-likelihood functions have been used (see 
Schadauer et al. (2017) for more details). These can 
be combined with Monte Carlo approaches to assess 
the uncertainty related to the stochasticity of the 
processes (Fortin et al., 2009). This might work under 
the assumptions that the model limitations are used 
deterministically, that inputs have zero variance and 
that the outputs are unique. The evaluation process is 
then completed with an uncertainty analysis to quantify 
the overall uncertainty associated with the response 
as a result of uncertainties in the model input (Saltelli 
et al., 2008). Uncertainty in forest model outputs has 
also been assessed using Bayesian synthesis or melding 
(McFarlane et al. 2000), Bayesian averaging (BA) and 
model comparison (BMC) for outputs from several 
models (van Oijen et al., 2013, Londsdale et al., 2015). 
However, these approaches have been applied to single 
species and the accountability of uncertainty associa-
ted with parameters from multiple-species stands is still 
challenging.

Application of forest models and model

In European forest ecosystem management, inte-
gration of different forest functions is a characteristic 
concept (Resolution H1 MCPFE in Helsinki 1993; 
Pretzsch et al., 2008; Ammer & Puettmann 2009). 
Heterogeneous, uneven, mixed-species forest stands 
are currently advancing in Europe (Bravo-Oviedo et 
al., 2014), as they indisputably fulfil many ecological 
and social functions and services better than even-
aged monocultures (Gamfeldt et al., 2013). However, 
management of structurally complex mixed forests is 
no easy task in practice (Coll et al., 2018). Using mo-
dels for mixed forests and their outputs can sup port 
management and pave the way for better understanding 
of the underlying processes at the organ, individual 
tree and ecosystem levels. Such models should be wi-
dely utilized in the education system and in training 
activities for students and forest managers. Simulation 
and analysis of thinning regimes by means of models 
provides an excellent educational tool for mixed forest 
tending operations during silvicultural courses. For 
instance, different types of thinning can be simulated 

platforms for mixed forests: some ex -
amples from Europe
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by diverse model algorithms that mimic thinning 
from below, from above, by single tree selection, by 
target diameter or geometric thinning (Söderbergh 
& Ledermann, 2003). Many models also allow users 
to interactively perform different types of thinning 
(Seifert, 1998; Fabrika, 2003). Results in the form of 
tables, charts, and 3D visualization enable the com-
pa rison of the effects of different thinning regimes on 
structure, stability and productivity for a given mixed 
stand. This ‘thinning training tool’ can also be applied 
to marteloscope experiments (Poore, 2011), to test and 
demonstrate the impact of the thinning performed by 
each trainee, using 3D visualisation and other graph 
and table outputs. To this end, many existing empirical 
models and simulators can be used, such as SILVA 
(Pretzsch, 2002), SIBYLA (Fabrika & Ďurský, 2005), 
BWINPro (Nagel & Schmidt, 2006) or IBERO (Bravo 
et al., 2012). Process-based models such as FORLAS 
(Brzeziecki, 1999; Zajączkowski, 2006) can also serve 
as an educational tool during forest ecology courses 
and promote better understanding of natural forest 
secondary succession processes, under current climate 
parameters and for different climate change scenarios. 
Though mixed-forest models are gaining popularity 
in many European university courses (Pretzsch, 2009; 
Fabrika & Pretzsch, 2013), greater use of available 
mo dels in forest practice is still lacking. In the follo-
wing paragraphs, we provide a short description of 
several models that are frequently used in Europe for 
mode lling mixed stands, based on different approaches 
(hybrid, process-based, empirical) and resolutions 
(lands cape, stand and individual tree level).

SIBYLA

SIBYLA is a hybrid model containing empirical, 
process-based and structural modelling principles 
(Fabrika, 2007). The core of SYBILA is a spatially 
explicit (distance-dependent) empirical tree model 
that requires input data for individual trees (position, 
diameter, height, crown parameters, quality parame-
ters). If the data are not available, a forest structure 
generator is used. The given or generated forest 
structure is displayed as a 3D forest structure model. 
From tree parameters and spatial structure, the calcu-
lation model computes all the important outputs for 
production, biomass, biodiversity, revenues and costs.  
Forest development is simulated in 1-year time-steps 
using mortality, disturbance, thinning, competition 
and increment models, as well as a model of forest 
regeneration. It is directly parametrised for 5 basic tree 
species: common beech, pedunculate or Sessile oak, 
Norway spruce, silver fir, and Scots pine. In total, 26 
different tree species can be simulated, but some of 

them are derived by modifying the growth processes 
of the 5 basic tree species. The mortality model focuses 
on intrinsic and growth-dependent mortality (Fabrika, 
2007). The disturbance model addresses in du ced tree 
mortality caused by external disturbance factors. It is 
based on modelling risk and incorporates the probabilities 
of hazard, exposure and vulnerability for different 
disturbance agents: wind, snow, ice, bark beetles, 
timber borers, defoliators, wood-destroying fungi, air 
pollutants, drought, fire and illegal cutting (Fabrika & 
Vaculčiak, 2009). Different types of thinning can be 
simulated: from below, from above, neutral thinning, 
target trees method, target dimensions method, target 
frequency distribution method, geo metric method, and 
interactive thinning (Fabrika & Ďurský, 2005). The 
competition model is based on the crown light com-
petition index (KKL) proposed by Pretzsch (1995). 
The age-independent increment mo del simulates tree 
diameter and height increments based on the reduc tion 
of their growth potential. Growth potential is defined 
according to the ecological site classification proposed by 
Kahn (1994), based on climate and soil characteristics, 
and modified to reflect the competition pressure of trees 
and tree vitality, as determined by tree crown size. If tree 
age is unknown, it is derived from the growth potential 
and the current tree height at the beginning of the growth 
period. The regeneration model is an ingrowth model 
that generates new tree generation in a forest stand 
(Merganič & Fabrika, 2011). This model is composed 
of individual-tree generator sub-models along with 
a diameter and height distribution model for the new 
generation and a sub-model for locating regeneration 
in the stand. 

SILVA

SILVA (Pretzsch et al., 2002) is a single-tree-based, 
position-dependent simulation model designed for 
ope ra ting at the stand or large-area (landscape) level. 
It includes the most important tree species and site 
conditions in Central Europe. The model can handle 
different input data resolutions. The minimum input 
in for mation required at stand level is the quadratic 
mean diameter and number of trees per hectare for 
each species in the stand. Maximum input consists 
of a list providing diameter at breast height (dbh), 
height, height to crown base, crown diameter, and 
position for each tree. The site information needed is 
restricted to a minimal set of climatic and soil varia-
bles that are usually available to practitioners. For 
large-area simulations, the SILVA interface handles 
grid-based forest inventory data, which it uses to 
simulate landscape-level scenarios in one run. SILVA 
growth functions describe the growth reaction of each 
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tree, according to given size and site conditions, and 
the competition exerted by its neighbors. All SILVA 
functions exclude stand or tree age as an explanatory 
variable, so the model is not restricted to even-aged 
pure stands. SILVA can simulate a broad range of 
treatments, from traditional thinning from below to 
selective thinning to target-diameter felling. Different 
types and intensities of thinning interventions or final 
harvests can be applied at stand and landscape levels in 
one simulation run. Model output is designed for multi-
criteria scenario assessment, covering classic growth 
and yield information as well as financial parameters 
and indicators for forest structure and diversity. Spe cial 
landscape-level constraints such as habitat or protection 
areas can be considered by stratifying the inventory 
data accordingly and defining specific treatments for 
strata with constraints. SILVA does not command an 
automatic optimization algorithm. Optima are usually 
approximated manually by sensibly defining and mo-
difying scenario settings.

BALANCE - a process based, spatially explicit forest 
growth model

The process-based growth model known as 
BALANCE (Grote & Pretzsch, 2002) calculates the 
three-dimensional development of trees or forest stands 
and estimates the consequences of environmental 
impacts. As an individual tree model, BALANCE 
simulates growth responses at tree level, which 
enables estimation of the influence of competition, 
stand structure, species mixture, and management 
impacts. Tree development is described as a respon-
se to individual environmental conditions, as these 
change with the development of each individual tree. 
The individual carbon, water and nutrient balances of 
European beech, Sessile and common oak, Norway 
spruce, Scots pine and Douglas fir are the fundamental 
processes for the growth simulations. Micro-climate 
and water balance are calculated for each segment of 
each layer using temperature, radiation, precipitation, 
humidity and wind speed measurements from climate 
stations. While these calculations are computed daily, 
the physiological processes of assimilation, respiration, 
nutrient uptake, growth, senescence and allocation are 
calculated in 10-day time steps from the aggregated 
driving variables. In this way, CO2-concentration, soil 
condition, competition between individuals and stress 
factors such as air pollution and nutrition deficiency 
can be considered in addition to the weather conditions 
when modelling tree growth. BALANCE includes 
different approaches for estimating the environmental 
conditions for each individual tree. To depict rela tion-
ships between environmental influences and growth, 

the annual foliage development cycle must be known 
beforehand. Allocation of carbon and nitrogen to roots, 
branches, foliage and stem is computed according to 
functional balance and pipe model principles. 

LandClim

LandClim (Schumacher et al, 2004 and 2006) is a 
stochastic forest landscape model designed to study 
spatially explicit forest dynamics at the landscape scale 
over long time periods and with fine spatial resolution 
(25 m x 25 m grid cells). This model uses a cohort 
approach in which trees of the same age and species 
are simulated by one representative individual. So far, 
thirty-eight of the most common tree species from 
Central Europe and the Mediterranean region have 
been parametrized. Tree cohorts compete with each 
other for light and water, creating changes in species 
mixtures along environmental gradients. In water-li-
mited conditions, the drought tolerance of each species 
determines growth and relative competitive strength, 
which influences the species mixture that evolves. With 
increasing altitude and latitude, temperature becomes a 
limiting factor and tree growth is controlled by species-
specific minimum growing degree-day requirements. 
Trees also compete for light, which is determined 
by the vertical structure, canopy characteristics and 
species-specific shade tolerances and foliage types. 
Shade intolerant species dominate in early successional 
stands and are gradually outcompeted by more shade 
tolerant species as the canopy closes. LandClim has 
been used to simulate potential natural vegetation as 
well as managed forests, by simulating interventions 
such as harvesting, thinning and planting. The model 
can also simulate the impact of disturbances, including 
fire, windthrow and bark beetle outbreaks, on forest 
dynamics. 

SORTIE-ND

SORTIE-ND (Canham et al., 2005) is an individual-
based model of forest dynamics that records the spe-
cific location of each tree within a plot and simulates 
recruitment, growth, and mortality for individual 
trees. At a given time, the model state is defined by a 
plot, trees and grids. The plot where the model runs is 
characterized by a size, a climate and a geographical 
location. The trees are defined according to species, 
life history stage (seedlings, saplings, adults…), size 
and position in the plot. Finally, the grids cover the 
entire plot and provide information about variation in 
the variables throughout the space (soil fertility, light 
availability at the forest floor, etc.). In SORTIE-ND, 
the change of the model state at a given time step is 
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driven by a number of behaviours that are selected and 
parameterized by the user. Most important behaviours 
rely on the computation of resource availability, tree 
recruitment and growth and mortality processes in 
seedlings, saplings and adults. 

The spatially explicit nature of the SORTIE-ND 
model makes it especially suitable for simulating 
mixed-forest dynamics. It has successfully simulated 
fine-scale spatial processes such as neighbourhood 
com petition for resources (Canham et al., 2004, 2006), 
seed dispersal and recruitment patterns (Ribbens et 
al., 1994; Papaik & Canham, 2006), and the effects of 
different natural or anthropogenic disturbances such as 
windthrow, silvicultural treatments and insect outbreaks 
(Canham et al., 2001; LeGuerrier et al., 2003; Uriarte et 
al., 2005; Beaudet et al., 2011; Ameztegui et al., 2017). 

SORTIE-ND was recently used at the European 
level to evaluate the effects of climate change on 
conifers in mixed-forest dynamics in the montane-
subalpine ecotone of the Pyrenees (Ameztegui et al., 
2015). These forest areas are mostly composed of two 
shade-intolerant pines (Pinus sylvestris L. and Pinus 
uncinata Ram.) and a shade-tolerant species (Abies 
alba Mill.). Like many other mountainous transitional 
areas, they are considered to be particularly sensitive to 
the predicted increases in temperatures (Ameztegui & 
Coll, 2011). 

CAPSIS

The CAPSIS (Computer-Aided Projection of Stra-
tegies In Silviculture) project has been developing in 
France since 1994, with the main objective of simula ting 
the consequences of silvicultural treatments based on 
scientific knowledge. It was built to be a perennial, open 
and dynamic integration platform for forestry growth 
and yield models (Dufour-Kowalski et al., 2012). A set 
of rules have been defined to encourage collaborative 
development, model sharing and code reuse. Every 
component developed, except the CAPSIS modules 
(the model implementations), is distributed under a free 
license (Lesser General Public Licence), so that the core 
application and all extensions can be used by anyone. 
CAPSIS can integrate diverse models involving va rious 
dynamic processes (growth, competition, mortality, 
regeneration, dispersion…) and specific properties 
such as radiative balance, genetic information at the 
individual level, internal biomechanics or wood qua-
lity. The user-friendly graphical interface makes the 
mo dels accessible to forest managers. A full description 
of CAPSIS can be found in Dufour-Kowalski et al. 
(2012). The platform characteristics and the support 
provided to the modellers are crucial to model 
development. Similarly, the possibility of developing 

specific modules for coupling mono-specific models 
makes it possible to adapt generalized original models 
developed for pure stands and apply them to mixtures. 
The platform currently offers models for various spe-
cies in pure and mixed stands. Output results include 
forest development projections for multi-species 
mixtures, stand structures and silvicultural regimes; 
evaluation of mixture effects on basal area growth 
according to environmental variables; tree growth 
and resource use in mixed stands; and simulation of 
multispecies tropical forest dynamics (for a list of the 
CAPSIS projects, see http://www.inra.fr/capsis/).

sIMfLOR

The sIMfLOR simulators’ platform was created to 
implement different growth models with a common 
phi losophy. It was developed with an easily-upda-
table, user-friendly scope that is sensitive to forest 
ma na gement and climate change for the main tree 
species in Portugal. StandsSIM.md Management Dri-
ven simulator (Barreiro et al., 2016) was recently 
developed to overcome the limitations of the existing 
stand-level simulators in sIMfLOR by covering more 
tree species, stand structures and stand compositions. 
StandsSIM.md-MD was programmed in a modular 
form, linking five main Modules: 1) The Configuration 
Module defines all simulation parameters, namely the 
type of model to be applied (stand-level, individual-
tree or 3PG), the simulation mode, the number of years 
to simulate and the hard disk locations of input and 
output files; 2) The Input Module is based on a set of 
inputs that characterize the initial forest condition and 
structure, depending on the type of growth model; 3) 
The Growth Module includes empirical individual tree 
and stand growth models and a stand-process-based 
growth model (only available for eucalyptus at present) 
to update growth using the selected model for a given 
tree species, according to a set of forest ma nagement 
prescriptions; 4) the Management Module defines the 
prescriptions that schedule the sequence of Forest 
Management Approaches, each corresponding to a 
stand rotation cycle, and their primary silvicultural 
operations throughout the simulation period; 5) The 
Output Module produces the ‘yield-table output’, 
con taining one yield table per stand and prescription, 
with an ample list of stand variables when running in 
1-PPS mode (one prescription applied to each stand) 
or several prescriptions per stand when running in 
MULTI-PPS mode. In the latter mode, an additional/
alternative output file structured to serve as input to 
a linear programming optimizer can be produced. 
StandsSIM.md runs tree species separately on 1-year 
time-steps and the present version does not apply to 

http://www.inra.fr/capsis/
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mixed-species stands. These can be simulated as pure 
stands with an area corresponding to the proportion of 
the species basal area in the stand. The resulting mixed-
forest forecast is based on weighted pure stands (by 
area proportion).

Heureka

The Swedish University of Agricultural Sciences 
(SLU) developed the Heureka decision support 
system (DSS) (Heureka 2010, www.slu.se/heureka) 
that is intended for a broad array of users (Lämås & 
Eriksson, 2003; Wikström et al., 2011). Heureka is 
the successor of the Hugin forest planning system 
(Fahlvik et al., 2014) and relies on the empirical 
growth models being developed in Sweden since the 
1980s. Heureka forestDSS is based on a common 
core of stand and single-tree growth and yield models 
with an interactive stand simulator. From this, four 
main software applications have been developed: (1) 
RegWise analyses (tool for long-term, large-scale areas 
such as countries, regions) based on National Forest 
Inventory sample plot data, (2) PlanWise (tool for long- 
and medium-term planning on small to large forest 
estates, can be applied to sample stands or all stands 
on the estate), (3) PlanEval (a tool for MCDA analyses) 
and (4) StandWise (an interactive stand simulator for 
analysing management of individual-stand actions and 
development). In a recent evaluation (Fahlvik et al., 
2014), Heureka empirical models (based on historical 
growth data) were shown to provide sound and credible 
growth predictions that do not depend upon projection 
length. Stand-level models presented greater precision 
than individual-tree models.

The core growth and yield models are based on NFI 
data, which have been demonstrated (Fridman et al., 
2014) as a reliable source of long-term forest state 
time series for describing and forecasting different 
ecosystem services. Common mixtures in Sweden 
are spruce-pine, spruce-birch and pine-birch. More 
complex and unusual mixtures are difficult to handle 
in the system. The Heureka system is frequently used 
in research, education and practical forestry. In 2013, 
the forestry organisation formalised an agreement with 
the relevant authorities and industry concerning how 
to finance the system, enabling its continuous update 
and renewal.

IBERO

IBERO is an individual-tree, distance-independent 
growth model (Bravo, 2005) that relies on different 
modules (1) imputation of missing data (Static 
equations to input crown, bark thickness, height-

diameter...), (2) productivity (site index curves, site 
productivity discriminant rules…) (3) ingrowth 
(two - steps' models), (4) mortality functions, (5) 
estimation of environmental services provision (stem 
taper equations, link functions for carbon, mushroom 
yield…) and (6) growth equations (diameter and height 
projection). Currently, mixtures of Pinus sylvestris 
and Pinus pinaster can be simulated with IBERO on 
the SIMANFOR platform (Bravo et al., 2012), using 
parametrizations from pure stands that have been 
integrated for testing and evaluation purposes. Mixed 
forest forecasts are based on growth of individual 
trees in pure stands, which are then combined to 
obtain the mixture effect. A new parametrization for 
this mixture is being developed from the results of 
ongoing experimental and monitoring work (Riofrio 
et al., 2017).

Research gaps and opportunities

Mixed forests are complex systems that differ 
from pure stands in their response to environmental 
and management conditions. Tree allometry is also 
modified when trees grow in mixtures. Thus, the use of 
equations developed for monospecific stands can lead 
to erroneous growth estimates. The effect of mixtures 
can be included in models as a modifier (i.e., consi-
dering species proportion in different ways) or as a 
differential competition factor in growth and mortality 
equations. Studies analysing changes in allometry are 
observational, and understanding of the mechanisms 
behind such changes is significantly lacking. Species 
interaction, along with inter- and intraspecific com-
petition during density-dependent mortality events, also 
need further research, as many models are still based 
on weighted averaging. Additionally, mixed forest 
structure can be even-aged or uneven-aged and single-
or multi-storeyed. This makes forecasting dynamics 
far more complicate and requires updated theoretical 
frameworks.

The information needed by forest managers de-
pends first on whether forests are being managed 
primarily as wood production systems or – at least 
partially – for other forest ecosystem services as well. 
Second, it is important to know whether the managers 
are closely involved with operational decisions or 
more concerned with forest policy issues and longer-
term considerations, including the sustainability of 
various options. For forest practice, in the field of forest 
planning and multicriterial decision analysis (MCDA) 
support systems, some important attributes should be 
considered, including clear specification of purpose and 
documentation of model limits, reasonable accuracy, 

http://www.slu.se/heureka
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user-friendly handling and ways of communicating 
the results (Teufel et al., 2006). Visualization of model 
results is probably one of the more important tools for 
communicating results, and internet-based knowledge 
systems (e.g. smart-phone applications) need to be 
developed to reach many forest owners (Hannertz 
et al., 2010). Until now, universities and research 
institutes have generally developed these models and 
systems. To ensure greater practical implementation in 
the future, closer cooperation between end-users and 
developers is needed. This requires better understanding 
of models and systems by forest practitioners, and 
constant communication between model developers 
and practitioners, which will benefit both groups. 
Because future models and systems should developed 
for use in an entire portfolio of silvicultural strategies, 
including sustainability criteria and indicators, end-
user participation is a key element for analyzing 
complex systems with diverse values.
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