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Abstract: The self-thinning rule established by Reineke in 1933, N � d�1.605 (N, d � number of stems and
quadratic mean diameter, respectively) assumes the same allometric relationship between size and density for a
wide spectrum of species under self-thinning conditions. We re-evaluate this rule based on 28 fully stocked pure
stands of common beech (Fagus sylvatica L.), Norway spruce (Picea abies [L.] Karst.), Scots pine (Pinus
sylvestris L.), and common oak (Quercus petraea [Mattuschka] Liebl.) in Germany that date back to the year
1870. OLS regression of the model ln(N) � a � b � ln(d) results in b values of �1.789 for common beech,
�1.664 for Norway spruce, �1.593 for Scots pine, and �1.424 for common oak. The allometric coefficient for
common beech differs significantly from the other species. There is also a significant difference between the b
values of Norway spruce and common oak. Except for Scots pine, the above allometric coefficients deviate
significantly (common beech) and close-to-significantly (Norway spruce, common oak) from the coefficient
�1.605 postulated by Reineke in 1933. To cover the species–specific oscillation of mortality rates, we
additionally calculate the self-thinning coefficient for each survey period. Ecological implications of the
species-specific scaling exponents are stressed and consequences regarding tools for regulating stand density are
discussed. FOR. SCI. 51(4):304–320.
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AS PLANTS GROW IN SIZE their demands on resources
and growing space increase. If resources are no
longer adequate for all stand components, self-

thinning will be initiated and the number of plants (N) per
unit area will decrease. The size–density allometry of plants
under self-thinning is particularly informative under eco-
physiological and production economics aspects because,
under self-thinning conditions, size–density allometry re-
veals the species-specific, critical demand on resources and
growing space of average trees at a given mean size. This
article therefore focuses on the allometry between tree num-
ber per unit area N and quadratic mean diameter d (N � dr).
The allometric rules postulated by Reineke (1933) and Yoda
et al. (1963) assume that the allometry between size and
density is the same for a wide spectrum of species. Previous
investigations tried to validate the rules from Yoda and
Reineke for herbaceous and woody plants and usually relied
on artificial time series or inventories (Harper 1977,
Pretzsch 2002a, Weller 1987, 1990). By contrast, the
present article proceeds from the hypothesis that size–den-
sity allometry is species-specific and may even be the
essential reason for variations in the competitive powers of
the main Central European tree species such as common
beech (Fagus sylvatica L.), Norway spruce (Picea abies [L.]
Karst.), Scots pine (Pinus sylvestris L.), and common oak
(Quercus petraea [Mattuschka] Liebl.). We agree with Baz-

zaz and Grace (1997) that, if these species-specific differ-
ences are ignored, then the way toward a morphologic-al-
lometric understanding of the competitive mechanisms of
tree species in pure and mixed stands will remain ob-
structed. The evaluation is based on real stem number-di-
ameter-time series in 28 fully stocked pure stands in Ger-
many that date back to the year 1870. This unique database
was used to answer the following questions: (1) Are there
species-specific differences in the allometric coefficient b of
the model ln(N) � a � b � ln(d), (2) Do the calculated b
values deviate significantly from the b value of �1.605
postulated by Reineke, and (3) Are any oscillations of the
allometric constant r � �N/N � �d/d species-specific?
Ecological implications of the individual species self-thin-
ning process are stressed and consequences regarding tools
for assessing, regulating, and scheduling stand density are
discussed.

Background
Allometry

The principle of the similarity of forms postulated by
Galileo Galilei was transferred to allometric relationships
among the length, surface, content, and biomass of organ-
isms or their organs by Spencer (1864) and Thompson
(1917). Bertalanffy (1951) uses the allometric principle to
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model changes in the shapes of plants and animals. Hence,
the relative growth rate of a defined organ y has a constant
relationship with that of any other part of its body or to the
entire body x, so that

dy

y
� b �

dx

x
. (1)

The integral of this equation reads y � a � xb or, in
logarithmic terms ln(y) � ln(a) � b � ln(x), where a is the
integration constant and b the allometric coefficient. The
integration constant a denotes the value y with x � 1. The
allometric coefficient a describes the slope of the allometric
straight line when plotted on the ln–ln scale (Figure 1). The
physiological interpretation of allometric equations for
which Bertalanffy (1951) saw great application potential in
morphology, biochemistry, pharmacology, and comparative
anatomy can be illustrated by transforming Equation 1 into

dy

dx
� b �

y

x
. (2)

Here, allometry is considered the result of the distribu-
tion of resources absorbed by an organism to its organs y
and x. The distribution key is based on the proportions
between y and x and on the allometric coefficient b, which
represents the distribution constant.

Allometry under Self-Thinning

Although the principle of allometry was derived from
individual-based considerations, it can be applied meaning-
fully to plant communities under self-thinning conditions
(Kira et al. 1953, Yoda et al. 1963). Figure 1 is a schematic
representation of the relationship between average plant size
and density on the ln–ln scale. The upper self-thinning or
limiting boundary line (solid line) marks the possible max-
imum density for a species at given size or weight per plant

in even-aged pure stands under optimal site conditions. The
lower self-thinning line (dashed line) marks the character-
istic boundary relationship for any stand under suboptimal
growth conditions. In accordance with growth and mortality
the density-dimension relationships in stands A and B ap-
proximate their corresponding stand-specific self-thinning
lines and subsequently deviate from this line, at different
absolute levels, with similar gradients. Under optimal
growth conditions, the upper boundary and self-thinning
lines may coincide (stand A). Suboptimal site conditions,
however, may also cause the self-thinning line to be posi-
tioned more or less distinctly below the upper boundary line
(stand B).

The Stand Density Index by Reineke (1933) is based on
the relationship between quadratic mean diameter d and
number of stems N per unit area in fully stocked and
nonmanaged stands by the equation

N � a � d�1.605, (3)

which can be represented on the ln–ln scale as a straight line

ln�N� � a	 � 1.605 � ln�d�, (4)

with intercept a	 � ln(a) and slope �1.605. Reineke ob-
tained this result by using pairs of variates for quadratic
mean diameter and number of stems per unit area from
untreated inventory plots in the United States and represent-
ing them on the ln–ln scale. Because there were merely
slight variations in various tree species, stand structures, and
sites, Reineke attributed a general validity to the allometric
coefficient b � �1.605 for fully stocked, even-aged forest
stands, regardless of tree species and site. Reineke’s rule has
gained considerable importance for the quantification and
control of stand density and modeling of stand development
in pure (Bergel 1985, Ducey and Larson 1999, Long 1985,
Newton 1997, Pretzsch 2001, Puettmann et al. 1993, Sterba
1975, 1981, 1987) and mixed (Puettmann et al. 1992, Sterba
and Monserud 1993) stands. Reineke (1933) used the allo-
metric coefficient b � �1.605 to develop his stand density
index SDI � N � (25.4/d)�1.605. The SDI describes the
density of stands with quadratic mean diameter d and num-
ber of trees per hectare N by calculating the number of
stems per hectare in these stands related to 10 inches mean
diameter (� 25.4 cm; 1 in. � 2.54 cm). In Europe, an index
diameter of 25 cm is used, so that

SDI � N � �25/d��1.605. (5)

With no knowledge whatsoever of the stand-density rule
by Reineke (1933), Kira et al. (1953) and Yoda et al. (1963)
discovered a similar boundary line in their studies of her-
baceous plants. Their self-thinning rule, also called the
�3/2 power rule or Yoda’s rule, describes the relationship
between the average weight m and the density N in even-
aged plant populations under natural growth conditions.
Kira et al. (1953) and Yoda et al. (1963), followed by
Harper (1977) and Weller (1987), assumed the follow-
ing relationship for herbaceous plants and shrubs: m �
a � N�3/2. Although Yoda’s rule incorporates the mean

Figure 1. Common principle of Reineke’s rule (1933) and the �3/2
power law by Yoda et al. (1963).
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aboveground biomass m of plants, Reineke (1933) made use
of the easily determinable quadratic mean diameter, d, at
height 1.30 m. Reineke’s rule represents a special case of
Yoda’s law when �m/m � �d/d � 2.4075, i.e., m � d2.4075

(Pretzsch 2002a, Smith and Hann 1984).
Due to practicability, there is a flaw in Reineke’s rela-

tionship that does not touch Yoda’s rule. Because d is
measured at a fixed tree height (1.30 m), it is not a funda-
mental scale of the trees. Thus, at different tree heights, d
will be measured at different relative and therefore func-
tional positions along the stem. For a very small tree (but
taller than 1.30 m), d would be measured somewhere in the
crown; for a very tall tree, d would be located in the root
collar. For trees shorter than 1.30 m, which clearly have
significant biomass and space requirements, d is not even
defined. Nevertheless, when dealing with tree dimensions,
which are normally measured on classical growth and yield
research plots and which are relevant for applying
Reineke’s rule in practice, this problem does not become
significant. At these tree dimensions, the position of d will
stay mostly in the parts of the stem, where its taper is
smallest. If not, the empirical finding that ln(N) and ln(d)
are connected linearly for unthinned stands would be rather
improbable.

Stand dynamics under self-thinning conditions is partic-
ularly informative under ecophysiological and production
economics aspects. It reveals the species-specific critical
demand on resources and growing space of average trees at
given size. If mean horizontal growing space s (s � 1/N)
falls below a critical limit, then this will cause the self-thin-
ning process to start. The allometric coefficient b describing
the relationship between density N and average plant size d
(N � db) reflects the species-specific self-tolerance (Zeide
1985) and effectiveness of space sequestration. Taking the
antilogarithm and deriving Reineke’s equation (Equation 4)
leads to �N/N � �d/d � �1.605. This relationship transfers
the allometric principle (Equation 1) to the relationship
between average tree size (d � quadratic mean tree diam-
eter) and stand density (N � number of trees per area). For
instance, a b value of �1.605 would mean that a relative
increase in quadratic mean diameter of 1% is concomitant
with a decrease in the number of stems of �1.605%. For the
mean growing space (s), we can use the reciprocal of the
number of stems s � 1/N, because a given unit area can
accommodate N � 1/s trees. The relationship N � db then
becomes 1/s � db or s � d�b and d � s�1/b. Differentiation
of the latter term leads to �d/d � �s/s � � 1/b and
quantifies the effectiveness of space sequestration of an
average tree in the stand. A b value of �1.605 signifies that
an increase in growing space �s/s of 1% would result in a
relative increase of quadratic mean diameter �d/d of merely
0.62305% (�1/b � 0.62305).

Data

This investigation is based on nine experimental plots in
common beech (Fagus sylvatica L.), nine in Norway spruce

(Picea abies [L.] Karst.), six in Scots pine (Pinus sylvestris
L.), and four plots in common oak (Quercus petraea [Mat-
tuschka] Liebl.) (Table 1). Most of these plots form part of
a network of long-term experimental plots studied under
yield-related aspects and are being supervised by the Chair
of Forest Yield Science at Technische Universität München.
The spruce test area Paderborn 697 from Westphalia and the
beech area Haiger 333 from the Saarland belong to the
former Prussian Network of Forest Experiments. Today, the
two latter trials are being monitored by the Lower Saxony
Forest Research Station in Göttingen.

All stands are reference plots of classical thinning trials
in southern and central Germany (Bavaria, Saarland, North-
Rhine-Westphalia). The oldest of these trial areas have been
under observation since the mid-19th century when yield-
related research was first introduced. They form the basis of
our knowledge in yield science from which treatment re-
gimes, yield tables, and training programs for forestry prac-
tice were developed. Because of their unique length, these
time series were the subject of numerous investigations on
the response to thinning of Norway spruce (Assmann 1953,
1970, Röhle 1994, Pretzsch and Utschig 2000), common
beech (Kennel 1972, Franz et al. 1993, Foerster 1993),
Scots pine (Foerster 1990, Küsters 2001, Pretzsch 1985),
and common oak (Assmann 1970; Mayer 1958, Utschig and
Pretzsch 2001). This article therefore merely reports essen-
tials from the lightly thinned, fully stocked A-grade plots.
The treatment of A-grade plots is restricted to the removal
of dead or dying trees and aims at the documentation of
self-thinning (Verein Deutscher Forstlicher Versuchsan-
stalten 1902).

About half of the experiments established in the autumn
of 1870 have remained under observation to this day (cf.
Table 1, period of survey). Correspondingly, the age span
thus covered by measurements is fairly large (cf. Table 1,
age span). The studied common beech plots represent av-
erage to very good site conditions on red marl and new red
sandstone soils in central Germany (mean height at age
100 � 23.1–31.8 m). The stands are the result of natural
regeneration following cutting according to the Hartig com-
partment shelterwood system, resulting in consistently
even-aged stands despite their origin from natural regener-
ation. Area sizes vary between 0.25 and 0.4 hectares; they
had not been treated before stand establishment and only
dead or dying trees have since been removed.

With the exception of the North-Rhine-Westphalian area
Paderborn 697, the Norway spruce trial areas are all located
in the prealpine area of South Bavaria, the South Bavarian
lowlands, and Swabia. They are concentrated on the South
German pleistocene where Norway spruce grows naturally.
The good to excellent site index is reflected by mean heights
at age 100 of 30.1–36.6 m. The stands were artificially
established, the trial areas Sachsenried 03 and Sachsenried
07 by seeding; all others by planting. Tree spacing in the
individual trials was uniform, but spacings among the trial
areas varied from 0.9 m 
 0.9 m, 1.2 m 
 1.2 m to 1.4 m

 1.4 m. The trial areas Denklingen 05, Eglharting 72, and
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Eglharting 73 are re-afforestations after clearcutting,
whereas all other areas originated from first afforestations
on agricultural areas and pastures. Table 1 compiles the
most important yield characteristics of the A-grade plots on
these areas from the first to the most recent survey. Some of
the areas were abandoned following storm calamities, while
others are under observation to this day, with the last survey
done perhaps several years ago.

The Scots pine trials of 0.25 to 0.3 hectares are concen-
trated on meager Jurassic and cretaceous sites in North
Bavaria. The total of six trials covers a relatively wide site
spectrum with mean heights of 20.3–28.0 m at age 100. The
majority of the pine trials were established by seeding after
clearcutting. About 3 to 5 kg pine seeds/ha were, in some
cases, intermingled with 0.5 to 3 kg seeds from European
larch (Larix decidua Mill.), northern white pine (Pinus
strobus L.), or common acacia (Robinia pseudoacacia L.).
However, these admixtures were almost completely ruled
out by Scots pine when the first survey was conducted. The

area Schnaittenbach 57 is a plantation after clearcutting with
10,000 trees/ha, with a regular spacing of 1.0 m 
 1.0 m.

Among the untreated trials, common oak has the weakest
representation with only four trial plots ranging from 0.2 to
0.3 ha. The trials involved here are located on new red
sandstone sites in the Palatinate and the Spessart region. The
site conditions range from average to good as reflected by
mean heights at age 100 of 22.8–26.0 m. The stands were
artificially established after clearcutting; 0.5 to 0.1 tons of
seeds were disseminated per hectare, the equivalent of
100,000 to 200,000 seedlings. To protect the oak trunks, an
understory of beech trees was introduced 2 to 5 decades
after the common oak stand had been established. The
understory is irrelevant in terms of total biomass and com-
petition with common oak and will therefore be neglected in
this evaluation investigation.

Figure 2 shows the ln(N)–ln(d) relationships for common
beech, Norway spruce, Scots pine, and common oak on the
ln–ln scale. The plotted straight lines demonstrate what

Table 1. Growth and yield characteristics for the first/last survey of 28 nonthinned, fully stocked experimental plots of common beech, Norway
spruce, Scots pine, and common oak

Species and experiment/plot n
First/last
survey

Age span
(yr)

Stem
number

(trees/ha)
Mean

height (m)

Mean
diameter

(cm)

Common beech/Fagus sylvatica L.
ELM 20/1 13 1871/1967 49–145 5,844– 400 13.2–35.0 7.7–36.0
FAB 15/1 12 1870/1958 48–136 6,220– 477 12.5–32.2 7.6–34.1
HG 333/3 11 1951/1999 56–104 2,368– 840 12.7–26.3 13.6–26.9
HAI 27/1 16 1870/1994 38–162 6,533– 269 12.2–36.5 6.9–43.6
KIR 11/1 10 1871/1936 49–114 5,146– 755 11.1–26.5 8.6–27.8
LOH 24/1 13 1871/1967 66–162 7,081– 292 13.5–32.3 8.2–39.6
MIS 25/1 15 1870/1981 42–153 11,242– 439 8.7–29.1 5.7–35.8
ROT 26/1 14 1871/1967 48–144 5,458– 425 13.2–34.0 8.2–37.0
WAB 14/1 15 1870/1967 48–145 6,206– 650 10.4–28.8 7.8–29.3

Norway spruce/Picea abies (L.) Karst.
DEN 05/1 18 1882/1990 35–143 3,528– 508 14.4–40.6 13.5–47.3
EGL 72/1 13 1906/1990 36–120 6,256– 712 10.5–32.5 8.8–35.9
EGL 73/1 12 1906/1983 42–119 2,240– 672 14.4–33.2 15.2–36.9
OTT 08/1 14 1882/1963 32–113 4,232– 632 14.0–38.8 12.8–40.6
PB 697/2 17 1928/1999 42–113 3,623– 548 14.5–36.8 12.2–40.9
SAC 02/1 15 1882/1972 32–122 4,100– 492 14.2–38.8 12.8–44.7
SAC 03/1 14 1882/1965 33–116 7,428– 596 10.6–38.2 8.6–42.0
SAC 67/1 14 1902/1990 43–131 3,496– 443 15.9–41.4 13.7–50.7
SAC 68/1 14 1902/1990 42–130 2,952– 544 16.5–40.4 15.2–45.3

Scots pine/Pinus sylvestris L.
SLU 50/1 13 1899/1991 26–118 4,900– 550 8.9–29.3 8.3–32.1
SNA 57/1 13 1901/1995 44–138 5,104– 456 9.1–23.8 7.8–28.3
BOD 229/9 8 1961/1999 36– 74 4,650– 850 8.0–19.0 6.7–19.5
WAS 234/1 9 1962/1999 86–122 1,117– 358 14.0–23.6 15.3–28.2
BUL 240/1 7 1965/1999 59– 93 1,080– 620 12.5–19.4 15.5–25.4
HED 243/6 6 1971/1996 72– 97 2,067–1,056 16.9–22.4 14.6–21.8

Common oak/Quercus petraea (Matt.) Liebl.
WAL 88/2 9 1934/1989 48–103 1,676– 514 16.5–30.3 13.4–30.9
WAL 88/5 11 1934/1999 48–113 1,643– 457 16.3–31.6 13.4–33.2
ROH 90/1 8 1934/1996 70–132 1,205– 487 17.4–27.4 15.4–32.5
ROH 620/1 5 1980/2001 54– 75 1,569–1,038 18.7–24.2 15.4–21.9

n � number of surveys; survey � first and last calendar year of survey; age � stand age (yr) at the first/last survey, reference age for the yield data in
columns 6 to 9; stem number � number of stems in the remaining stand (trees � ha�1); mean height � height of stem of mean basal area (m); mean diameter
� average diameter at height 1.3 m of stem of mean basal area (cm).

Forest Science 51(4) 2005 307



decrease in the number of stems is to be expected with
increasing diameter if the stands followed the Stand Density
Rule by Reineke (b � �1.605). It goes for all plots that only
those inventories were included in the evaluation that rep-
resent fully stocked, untreated conditions. In a few cases the
stem number–diameter pairs of variates based on invento-
ries after the year 1992 had to be discarded, because from
that time on, some of the stands suffered severe disturbance
from storm calamities and snow break.

Common beech (Fagus silvatica L.) is represented on the
basis of nine plots and 119 full surveys. The oldest plots
date back to the year 1870, cover an age span from 38 to 162
years, and were surveyed 16 times. Here, stem numbers
range from 11,242 to 269 trees per hectare, average diam-
eters from 5.7 cm to 43.6 cm, and basal areas from 24.43 to

47.74 m2 per hectare. The nine Norway spruce (Picea abies
[L.] Karst.) test plots cover an age span of 32 to 143 years.
For the oldest plots, 18 full surveys are available for eval-
uation, there is a total of 131 stem number–diameter pairs
of variates for the analysis. Some of these plots have been
under observation since 1882, with a variation in number of
stems of between 7,428 and 443 trees per hectare, whereas
the mean diameters range from 8.6 cm to 50.7 cm and the
basal areas from 38.05 to 89.44 m2 per hectare. The repre-
sentation for Scots pine (Pinus silvestris L.) involves six test
plots, the oldest of which have been under observation since
the spring of 1899 and were surveyed 13 times. Hence, there
is a total of 56 full inventories for the analysis. Ages range
from 26 to 138 years and stem numbers from 5,104 to 358
trees per hectare, with a spectrum of average diameters

Figure 2. ln(N)–ln(d) relationship for the untreated, fully stocked nine pure common beech, nine Norway spruce, six Scots pine, and
four common oak stands on which the investigation is based. Straight lines ln(N) � a� � 1.605 � ln(d) following Reineke (1933) with
intercept a� � 11, 12, 13 (cf. Equation 4) are given as reference.
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ranging from 6.7 cm to 32.1 cm and basal areas of stands
comprising 16.39 to 44.51 m2 per hectare. Common oak
(Quercus petraea [Mattuschka] Liebl.) representation is
based on only four plots, some of which have been observed
since 1934 and were surveyed 11 times, with a total number
of 33 full surveys. Stand data range from 1,676 to 457 trees
per hectare, average diameters from 16.3 cm to 31.6 cm, and
basal areas from 22.44 to 40.40 m2 per hectare.

To quantify stand density, the SDI � N � (25/d)b

(Reineke, 1933) was calculated with the respective plot-spe-
cific b values. To get SDImax the SDI values were deter-
mined for all surveys of any trial plot. SDImax hence is
max(SDIi�1. . .n). The SDImax range (mean) is in N � ha�1:
for common beech, 796 � 1,013 (885); Norway spruce,
1,246 � 1,549 (1,395); Scots pine, 590 � 972 (752); and
common oak, 672 � 854 (758).

Methods

For each of the 28 plots, the relationship d � Nb was
analyzed by linear regression according to the model

ln�N� � a � b � ln�d�, (6)

with d denoting the quadratic mean diameter and N the
number of stems per hectare. To obtain an overall tree
species-specific slope, all stem number–mean pairs of vari-
ates were integrated in an overall OLS regression for com-
mon beech, Norway spruce, Scots pine, and common oak,
respectively. Before this analysis the mean values ln(d) and
ln(N) were calculated for each stand and used for the stan-
dardization ln(di)	 � ln(di) � ln(d) and ln(Ni)	 � ln(Ni) �
ln(N). The standardization has the effect of focusing all

Figure 3. ln(N)� plotted over ln(d)� for all surveys on all plots, shown separately for the species common beech, Norway spruce,
Scots pine, and common oak. The data are used for the OLS regression ln(N)� � ln(d)�.
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straight lines on the mean value (ln(d), ln(N))) and any
different intercepts are eliminated (Figure 3). The OLS
regression then results in an overall species-specific slope b.

When regressing data, in our case, mean tree diameter
with corresponding stem number per unit area from subse-
quent observations of long-term research plots, we have to
be aware that the inference statistics obtained by standard
procedures may be biased and underestimated because of
repeated measures and time series effects. The former
means that we have to expect the single plots of one tree
species to show plot-typical apparent deviations from the
real species-specific slope b resulting from plot-specific
long-term effects. The latter means that subsequent obser-
vations on one plot may be correlated. This is expressed and
measured by temporal autocorrelation.

Because an unbiased estimation of the confidence inter-
vals of these parameters is crucial for this study, we de-
signed a two-stage bootstrap method to correctly take care
of the repeated measures effects and for first-order temporal
autocorrelation. We constrain to first-order autocorrelation
because the more or less low number of observations in our
time series (mostly, n � 15) is a weak basis for searching
higher orders of temporal autocorrelation. In addition, it is
reasonable to assume that, in case of sequential forest re-
search plot inventories, first-order autocorrelation is the
only important kind of temporal autocorrelation.

Our bootstrap algorithm takes care of the repeated mea-
sures effects by simply resampling the set of research plots
for the species of interest. We address the time series effects
based on a consideration by Mooney and Duval (1993), who
recommend to re-sample only the residuals when the aim is
to obtain bootstrapped confidence intervals for the param-
eters of a linear regression. This is important, because
bootstrapping means re-sampling the random component of
a data set, not the functional relationships. In our special
case, when the residuals are not entirely random, not en-
tirely independent from each other, this method has to be
refined. We use two functional relationships: first, the rela-
tionship between independent and dependent variable; sec-
ond, the relationship between subsequent residuals. Our
random component for re-sampling is manifested through
the residuals of the second relationship.

The part of our bootstrap algorithm that addresses tem-
poral plot-specific autocorrelation comprises the following
steps:

Step 1: Regression Based on the Original Data

Consider, we have a sample of n (x, y) pairs and apply
the regression model

ŷ � a � b � x. (7)

We know that the x, y pairs are first-order autocorrelated
and we want to know confidence limits for the parameters a
and b. As a result of the OLS regression procedure, we

obtain the residuals r1, . . . , rn; we call them the residual
pool R:

R � �r1, r2, . . . , rn . (8)

The index of r describes the temporal sequence of resid-
uals: r1 is matching the first, r2 the second, r3 the third
subsequent observation, etc. These residuals are assumed to
be more or less autocorrelated. Please note that, to keep
conventions, we use the variable name r with two different
meanings in this article. Here, in the context of bootstrap-
ping, we use it for residuals, while it symbolizes an allo-
metric slope below (Equations 17, 18, and later).

Step 2: Regression for Determining
Autocorrelation

Calculate a linear regression without intercept to capture
first-order autocorrelation:

r̂i�1 � c � ri. (9)

Thus, a residual is always explained by the previous one.
For this regression, we obtain residuals rr1, . . . , rrn�1; we
call them the rest residual pool RR:

RR � �rr1, rr2, . . . , rrn�1 (10)

When there is no higher-order autocorrelation, these resid-
uals are independent from each other. They represent the
random component of our data set.

Step 3: Calculate the Expected Values for y

Calculate the expected values of y,

ŷi � a � b � xi � i � �1, 2, . . . , n, (11)

according to the result of the previous regression analysis
for each x value. This results in n (x, ŷ) pairs, where x comes
from the original data set.

Step 4: Bootstrap the First Residual

Randomly draw a residual, with replacement, from the
residual pool R. This is the first bootstrapped residual,
therefore call it r	1.

Step 5: Bootstrap the Following Residuals

Because the next residual, r	2, is not independent from r	1,
generalized, r	i�1 is not independent from r	i. Use the regres-
sion equation for autocorrelation from step 2 to estimate its
deterministic component,

r̂i�1 � c � r	1 (12)

To obtain the random component, randomly draw a residual
rrran, with replacement, from the rest residual pool RR. The
bootstrapped residual r	i�1 results as

r	i�1 � r̂i�1 � rrran (13)

r	i�1 is the input variable for bootstrapping the next residual
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r	i�2. Step 5 is repeated until all residuals r	1, . . . , r	n are
bootstrapped.

Step 6: Build the Bootstrapped Data Set

Add the bootstrapped residuals r	 to the deterministically
calculated expected values for y,

y	i � ŷi � r	i � i � �1, 2, . . . , n (14)

y	 are the y values of the bootstrapped data set that is now
readily set up by n (y	, x) pairs.

Step 7: Perform Regression on the Bootstrapped
Data Set

Perform a linear regression,

ŷ	 � a	 � b	 � x. (15)

Record the parameter values a	 and b	. Repeat steps 4 to 7 a
large number of times N, e.g., N � 10,000.

Step 8: Analyze Distribution of Regression
Parameters

The result of the bootstrap procedure is a distribution of
a	 and b	, respectively, which is assumed to represent the
distribution of a and b, when the x, y samples would not
have been bootstrapped, but drawn from the basic popula-
tion. The distributions are available as cumulative fre-
quency tables, thus all required quantiles and confidence
intervals can be determined by simply counting through this
table.

Application for the Full Error Structure of
Our Data

The bootstrap regression procedure shown above covers
an entirely first-order autocorrelated sample and shows how
we address the time series nature of the data. However, it
has to be enlarged to cover our full problem. Because we
want to determine regression coefficients from a data set
that contains time series data from different plots, we have
data where there is correlation among the errors when they
come from the same plot, but no correlation across the
different plots. Consequently, steps 1–3 of our basic proce-
dure have to be performed in parallel for each plot. After
that, we create a bootstrapped set of plots of the same size
as the original set by randomly drawing plots with replace-
ment. This takes into account the repeated measures effects
that are not covered by temporal autocorrelation.

For each of the selected plots, we proceed with steps
4–6, where we bootstrap a plot-specific data set with regard
to the plot-specific autocorrelation. This will clearly lead to
different bootstrapped data sets for the same plot if this plot
has been selected more than one time in the step before.

Another important difference lies in step 7, regression of
the bootstrapped data set. Here, the bootstrapped y	, x pairs
of the single selected plots are pooled together. Regression
analysis is done over this whole data set, which results in the

parameters a	 and b	 (Equation 15) for the whole pooled
data set. After the bootstrap iterations, the resulting distri-
butions are evaluated exactly as described in step 8 above.

Test for First-Order Autocorrelation

To test residuals for first-order autocorrelation, we cal-
culate the Durbin–Watson test statistic (DW) based on our
residual pool (Equation 8),

DW �
�i�2

n �ri � ri�1�
2

�i�1
n ri

2 . (16)

Note that the indexes denote the temporal sequence of the
observations. The theoretically possible range of values for
DW is [0; 4], where values smaller than 2 indicate positive
and values greater than 2 indicate negative autocorrelation.
Values around 2 result when there is no temporal autocor-
relation. Because we have to consider that our sample sizes
(number of observations per plot) are likely too small for the
test statistic to be unbiased and because the distribution of
DW is dependent on the data matrix, we generate its sample
distribution for the case that there is no temporal autocor-
relation by bootstrapping. We use a bootstrapping method
referred to as BDW by Canjels (2002), which has proven to
be quite effective, especially in small sample sizes. Follow-
ing Canjels, we re-sample the residuals randomly with re-
placement (N � 10,000) and calculate DW for each series of
sampled residuals.

Interspecies variations were analyzed by comparing the
allometric coefficient b of pairs of species. Because the
error structure of our data violates the conditions of standard
test statistics, we use a simulation technique. Our bootstrap
method, as shown above, delivers a simulated distribution
for b per species, which in fact is a list of 10,000 values. For
comparing b1 from species 1 with b2 from species 2, we
independently draw, with replacement, random values b	1
and b	2 from each of the lists. We calculate the difference d	
� (b	1 � b	2) and record it. This procedure is repeated 10,000
times. Thus, we obtain a simulated distribution of the ex-
pected difference between b1 and b2. By counting through
this distribution, we can determine whether 0, which would
indicate no difference between the slopes of both species, is
inside or outside certain confidence limits.

Implementation

The bootstrap algorithms have been implemented in a
Pascal (Delphi) computer program BOOTREG. It has been
tested with two different random number generators, the
built-in random number generator of Delphi 5 and ran3 as
published by Press et al. (1989). During our test runs, both
generators produced the same results in terms of boot-
strapped confidence intervals. In the final version of the
program, we used ran3 because its algorithm and source
code are published. The program allows calculation of re-
gression confidence intervals also without caring for re-
peated measures and temporal autocorrelation effects. Con-
sequently, the effect of neglecting these special properties of
the error structure can be quantified.
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For a detailed analysis of d–N allometry the slope,

r �
ln�N2� � ln�N1�

ln�d2� � ln�d1�
�

ln�N2/N1�

ln�d2/d1�
, (17)

was calculated from the pairs of variates Ni�1, . . . ,n and
di�1, . . . ,n from consecutive surveys. Thus, r can be quanti-
fied for each period between two surveys. For infinitely
small time steps, Equation 17 corresponds to the quotient,

r �
�N/N

�d/d
, (18)

and equals the allometric constant b in N � db. When the
relationship of ln(N) and ln(d) is linear between two sur-
veys, Equations 17 and 18 are equivalent for this period.
Because our data were measured in discrete time steps, we
use Equation 17 as an approximation for Equation 18.

The decrease in the number of stems with defined in-
crease in diameter is quantified by r. If, within any period of
time, r � �1.5 for tree species 1 while r � �2.0 for tree
species 2 in the same period, this would indicate that tree
species 2 has a 33% higher mortality rate, which implies a
considerably lower self-tolerance than that of tree species 1
(Zeide 1985).

Table 2. OLS regression results for the ln(N)–ln(d) relationship and autocorrelation, shown separately for each plot

Species and
Experiment/

plot n

Parameter a Parameter b

r2 c
Durbin–
Watson p(DW)L estimate U L estimate U

Beech
ELM 20/1 13 12.220 12.239 12.257 �2.299 �1.744 �1.167 0.998 �0.021 2.04 0.36
FAB 15/1 12 12.237 12.263 12.300 �2.358 �1.728 �1.013 0.998 0.546 0.87 0.04
HG 333/3 11 11.827 11.866 11.909 �2.413 �1.581 �0.771 0.990 0.590 0.82 0.03
HAI 27/1 16 12.209 12.228 12.259 �2.228 �1.746 �1.206 0.999 0.363 1.04 0.04
KIR 11/1 10 12.121 12.148 12.190 �2.258 �1.652 �0.961 0.996 0.514 0.80 0.04
LOH 24/1 13 13.107 13.179 13.242 �2.717 �2.027 �1.342 0.995 0.545 0.88 0.04
MIS 25/1 15 12.534 12.627 12.739 �2.456 �1.865 �1.084 0.992 0.645 0.72 0.01
ROT 26/1 14 12.192 12.232 12.285 �2.372 �1.724 �1.039 0.997 0.662 0.70 0.01
WAB 14/1 15 12.406 12.450 12.509 �2.263 �1.748 �1.192 0.990 0.361 1.07 0.06
min 10 11.866 �2.027 0.990
max 16 13.179 �1.581 0.999
mean 13 12.359 �1.757 0.995

Spruce
DEN 05/1 18 12.342 12.392 12.468 �2.412 �1.622 �0.888 0.995 0.802 0.54 0.00
EGL 72/1 13 12.334 12.389 12.460 �2.362 �1.661 �0.814 0.992 0.475 1.02 0.05
EGL 73/1 12 12.097 12.143 12.242 �2.339 �1.593 �0.824 0.975 0.573 0.74 0.02
OTT 08/1 14 12.867 12.883 12.915 �2.147 �1.739 �1.182 0.995 0.263 1.09 0.07
PB 697/2 17 12.360 12.373 12.397 �2.124 �1.646 �1.133 0.997 0.280 1.18 0.06
SAC 02/1 15 12.876 12.893 12.925 �2.180 �1.757 �1.192 0.997 0.428 0.77 0.01
SAC 03/1 14 12.538 12.561 12.593 �2.197 �1.666 �1.112 0.997 0.121 1.55 0.28
SAC 67/1 14 12.359 12.398 12.431 �2.192 �1.624 �1.022 0.994 0.268 1.46 0.23
SAC 68/1 14 12.408 12.455 12.501 �2.189 �1.630 �0.892 0.990 0.399 1.17 0.10
min 12 12.143 �1.757 0.975
max 18 12.893 �1.593 0.997
mean 15 12.499 �1.660 0.992

Pine
SLU 50/1 13 11.706 11.738 11.760 �2.074 �1.561 �1.022 0.994 0.039 1.79 0.46
SNA 57/1 13 11.713 11.761 11.780 �2.067 �1.665 �1.068 0.984 �0.019 1.51 0.27
BOD 229/9 7 11.453 11.551 11.664 �2.296 �1.545 �0.587 0.957 0.311 0.95 0.17
WAS 234/1 8 11.499 11.522 11.560 �2.277 �1.627 �0.878 0.973 �0.125 2.03 0.32
BUL 240/1 6 10.488 10.560 10.626 �2.391 �1.315 �0.189 0.910 0.269 1.28 0.33
HED 243/6 6 11.870 11.918 11.963 �2.884 �1.585 �0.348 0.962 0.200 1.22 0.29
min 6 10.560 �1.665 0.910
max 13 11.918 �1.315 0.994
mean 9 11.508 �1.550 0.963

Oak
WAL 88/2 10 11.533 11.603 11.673 �2.481 �1.582 �0.570 0.950 �0.028 1.46 0.30
WAL 88/5 10 11.033 11.066 11.106 �2.045 �1.408 �0.768 0.980 �0.003 1.97 0.40
ROH 90/1 8 10.264 10.317 10.351 �1.949 �1.204 �0.415 0.950 �0.185 2.10 0.31
ROH 620/1 4 10.940 10.951 10.963 �2.713 �1.312 0.408 0.977 �0.813 3.35 0.00
min 4 10.317 �1.582 0.950
max 10 11.603 �1.204 0.980
mean 8 10.984 �1.376 0.964

L, U, bootstrapped lower and upper 95% confidence limits for parameters a and b; c, slope of first-order autoregression (Equation 9); p(DW), bootstrapped
one-tailed error probability of Durbin-Watson statistic; bold, p(DW) � 0.05.
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Results
Interspecific Differences of Relationship
N � db

Table 2 shows the results of the OLS regression between
the log-transformed values for diameter and stem number
(cf. Equation 6). Because the survey intervals for common
beech were comparatively long, the time series for this tree
species with a maximum and an average of 16 and 13
surveys, respectively, is less dense than that for Norway
spruce. For common beech, variation in a and b values
among experimental plots is considerably greater than for
Norway spruce. The b values range from �2.027 to
�1.581, with an average of �1.757. For Norway spruce, up
to 18 surveys are available for model-fitting. The b values
vary between �1.757 and �1.593, and their average comes
to about �1.660. The r2 values are, on average, above 0.99.
In the representation of Scots pine, the number of surveys
for the experimental areas under study range from 6 to 13.
The b values range from �1.665 to �1.315, with an average
of �1.550. The four plots for the common oak representa-
tion had a maximum of 10 and a minimum of 4 surveys.
Here again, the a and b values show merely slight variations
among the areas. The b values range from �1.582 and
�1.204, averaging at �1.376.

Table 2 also shows the results for first-order autocorre-
lation (AC) in the time series. Parameter c of Equation 9 is
positive in most cases, which indicates positive AC, as does
the DW test statistic. Its bootstrapped one-tailed error prob-
ability indicates significant (P � 5%) AC in seven of nine
cases for common beech and three of nine cases for Norway
spruce. For Scots pine and common oak, there is no signif-
icant AC except the oak plot ROH 620/4, which shows a
highly significant negative AC, which may be an artifact
resulting from the small number of only four surveys, where
it is very probable that positive and negative residuals
alternate.

However, because we have to consider AC to be mani-
fest, whether it is significant in our tests or not, we used
Equation 9 with the slopes c as shown in Table 2 for each
plot when bootstrapping the confidence intervals for the
parameters a and b. This is also justified by the values of c,
which are considerably high even in most of the cases,
where AC is not significant.

The resulting bootstrapped 95% confidence intervals for

slope b are by far larger compared to the ones resulting
when AC is not taken into account. For virtually each plot,
the lower bound is smaller than �2, the upper bound is
mostly near �1, often even greater. In one case, ROH
620/4, even 0 cannot be excluded. These results clearly
reveal that there is no way to detect interspecific differences
on single-plot level.

The OLS regression through the standardized
ln(N)	–ln(d)	 pairs of variates (cf. Table 3) resulted in:
ln(N) � 1.789 ln(d), r2 � 0.992, n � 119 for common
beech; ln(N) � �1.664 ln(d), r2 � 0.993, n � 131 for
Norway spruce; ln(N) � �1.593 ln(d), r2 � 0.980, n � 53
for Scots pine; and ln(N) � �1.424 ln(d), r2 � 0.950, n �
32 for common oak. All intercepts a � 0, due to the
standardization. The bootstrapped 95% confidence intervals
for slope b are narrow compared to the single-plot results
reported in Table 2, although first-order temporal autocor-
relation and the repeated measures effects have been fully
taken into account. For common beech, the bounds of the
interval are �1.877 and �1.706, for Norway spruce they
are �1.709 and �1.599, and they are �1.695 and �1.445
for Scots pine and �1.627 and �1.184 for common oak.
Comparing the slopes of the single species by bootstrapping
the distribution of their differences shows significant (two-
tailed P � 0.01) for the differences between common beech
and all other species (Table 3). In addition, Norway spruce
and common oak differ significantly (two-tailed P � 0.05).

Although significant differences cannot be proven for all
four species, the values and confidence intervals shown in
Table 3 indicate a certain species order in terms of the
Reineke-line’s slope: common beech � Norway spruce �
Scots pine � common oak, where only Norway spruce and
Scots pine on the one hand and common oak and Scots pine
on the other hand cannot be clearly separated.

Comparison of Individual Species’ Slopes with
Reineke’s �1.605

The 95% confidence interval for b (cf. Table 3) does by
far not include the Reineke value b � �1.605 for common
beech. For Norway spruce, �1.605 is close to the very
upper border of the confidence interval, which indicates a
close-to-significant difference (two-tailed P � 0.071). The
same is true for common oak, the only difference being that
�1.605 is near the lower 95% limit (two-tailed P � 0.076).

Table 3. Slope values and significance of their interspecific differences for OLS on the standardized data

Species
Common

beech
Norway
spruce

Scots
pine

Common
oak

U �1.706 �1.599 �1.445 �1.184
E �1.789 �1.664 �1.593 �1.424
L �1.877 �1.709 �1.695 �1.627

Common beech — ** ** **
Norway spruce ** — ns *
Scots pine ** ns — ns
Common oak ** * ns —

Bold numbers (E), OLS estimate of slope; L, U, bootstrapped lower and upper 95% confidence limits.
**,* Significant difference with two-tailed error probability P � 0.01 and P � 0.05, respectively; ns, nonsignificant difference, P � 0.05.
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Scots pine is the only species where �1.605 is virtually in
the center of the confidence interval. Because we observe a
significant difference between the b values for Norway
spruce and common oak, it is highly probable that the actual
slope of at least one of these species is different from
�1.605.

As shown above, our findings for parameter b suggest a
ranking in steepness of slope. The straight line for common
oak seems to be less steep than postulated by Reineke
(1933), whereas the slope for Norway spruce is most prob-
ably steeper than �1.605. For common beech, the slope is
significantly steeper than �1.605. For Scots pine, b matches
quite exactly Reineke’s slope. Common beech has the low-
est self-tolerance by far, which is expressed by the fact that
its allometric straight line starts in the initial state (h �
1.30 m, d � 0.5 cm) on the same high level as Norway
spruce, but reaches the same low level at d � 60 cm as
represented by Scots pine and common oak (Figure 4, left).
The allometric lines represented in Figure 4 were calculated
using the b values (slopes) obtained by regression with the
standardized data (Table 3). For a values (intercepts) we
used the species-specific mean intercepts from the single
plot regressions (Table 2).

The average growing space s in square meters per tree
results from s � 10,000/N. Representation of growing space
over diameter in Figure 4 (right) shows what may be con-
sidered remarkable allometry in common beech. At the
juvenile stage, its demand for growing space is, together
with Norway spruce, lower than for the other species. How-
ever, with increasing age, the growing space beech occupies
increases much more than it does in other species. The
curious reversal in common beech under self-thinning con-
ditions from space-saving in the juvenile stage to space-
grasping in old age can be interpreted to be the strategy
behind this climax tree species’ success. Looked at from a
different angle, common beech invests a relatively large

stem diameter per unit sequestered space in the initial phase
of the stand. Subsequently, it becomes increasingly efficient
in its space-sequestration behavior. Compared to other tree
species, beech sequesters larger portions of available grow-
ing space with a given stem diameter. As a consequence, it
shows the most rapid decrease in the number of stems
(Figure 4).

Species’ Oscillation around the Self-Thinning
Line

For all tree species, the survey periods averaged 6–7
years (common beech 6.74, Norway spruce 6.02, Scots pine
5.92, common oak 6.19). Certain deviations from Table 1
are due to the fact that some starting and ending periods
were not included because calamities had caused some
stands to sink below maximum density. The mean diameter
increment rates in the survey intervals amount to �d/d,
calculated as (d2 � d1)/d1 � 12.8, 9.2, 12.8, and 10.5% for
common beech, Norway spruce, Scots pine, and common
oak, respectively, where d1 and d2 symbolize the diameter at
the beginning and at the end of a survey interval. Table 4
reveals that not only do the mean r values show remarkable
differences among the species, but the oscillations regarding
the species-specific mean values also appear to vary. The r
minimum values are relatively similar, with �2.87 for com-
mon beech, �2.73 for Norway spruce, �2.48 for Scots
pine, and �2.51 for common oak. By contrast, the maxi-
mum values with �0.75 for common beech to �0.01 for
common oak vary considerably. SD ranges from 0.43 in
common beech stands to 0.81 in common oak. The different
oscillations are particularly evident in the variation coeffi-
cient of the r values for the tree species. It amounts to 26%
in common beech stands, 35% in Norway spruce, 46% in
Scots pine, and 67% in common oak. The representation of
r values over mean diameter (Figure 5) shows oscillation

Figure 4. Mean ln(N)–ln(d) relationships (left) and s–d relationship (right) for the tree species common beech, Norway spruce, Scots
pine, and common oak (N � stem number (trees ha�1), d � mean diameter (cm), s � growing space (m2)).
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around the mean value. Common beech is characterized by
less pronounced oscillation of the r–d relationship, whereas
common oak shows strong oscillation. Figure 5 shows se-
lected examples of this species-specific behavior from the
common beech plots KIR 11/1, ROT 26/1 (left) and the
common oak plots WAL 88/2 and ROH 90/1 (right).

Discussion

If, at any time in the course of stand development, the
product from the number of stems per hectare N and the
basal area corresponding to the mean diameter (d2�/4) were
constant (N � d2 � const), then N � d�2.0 would be correct.
In this case, the number of stems over the average diameter
d would have to be scaled by the exponent �2. The basal
area would hence remain the same during the entire stand
development, which, however, is not the case in reality.
Actually, the number of stems over mean diameter regresses
even under self-thinning by the species-specific exponent
b � �2, such that stand basal area rises continuously with
increasing mean diameter d. The relationship hence reads
N � db, b � �2. The rules established by Reineke (1933)
and Yoda et al. (1963) assume the same allometric relation-
ships between size and density for a wide spectrum of

species under self-thinning conditions. Both Harper (1977)
and Weller (1987, 1990) consider them important laws in
plant biology, whereas White (1981) and Zeide (1987)
remain doubtful and von Gadow (1986) even reduces the
rules to a myth. However, with few exceptions (Matthew et
al. 1995, Sackville Hamilton et al. 1995, Whittington 1984)
criticism is restricted to the falsification of these rules. This
study refrains from repeating these controversial discus-
sions. The evaluation of the present study relies on a data-
base that is unique as far as the number of experimental
areas and the lengths of the observation periods are con-
cerned, and reveals that, in four of six possible two-species
comparisons, b values differ significantly from species to
species. They come to �1.789 for common beech, �1.664
for Norway spruce, �1.593 for Scots pine, and �1.424 for
common oak, i.e., common beech � Norway spruce �
Scots pine � common oak. Apart from the species-specific
differences, this ranking is supported by significant (com-
mon beech) and close-to-significant (Norway spruce, com-
mon oak) deviations from the coefficient �1.605 postulated
by Reineke (1933).

Investigations of Reineke’s ln(N)–ln(d) relationship and
Yoda’s ln(m)–ln(N) law are based on different statistical

Table 4. Characteristic values for self-tolerance of the tree species common beech, Norway spruce, Scots pine, and European oak

Species

Mean
period length

(yr)
r

(mean)
r

(min)
r

(max)
r

(SD)
r

var(%)

Common beech 6.74 �1.6878 �2.8685 �0.7512 0.4340 25.7958
Norway spruce 6.02 �1.4742 �2.7245 �0.2465 0.5300 35.4019
Scots pine 5.92 �1.3829 �2.4786 �0.1519 0.6115 45.8255
Common oak 6.19 �1.2250 �2.5067 �0.0114 0.8057 66.9594

For each tree species, the average survey cycles (yr), mean value (m), minimum (min), maximum (max), standard deviation (SD), and coefficient of
variation (var) of the determined slopes r � ln(N2/N1) � ln(d2/d1) are shown.

Figure 5. Survey period-specific r values over mean diameter d for the selected common beech plots KIR 11/1 and ROT 26/1
(left) and for the common oak plots WAL 88/2 and ROH 90/1 (right). d corresponds to the beginning of each survey period. The
time series were smoothed by cubic spline. Broken lines represent the mean r values for common beech (r � �1.69) and common
oak (r � �1.23).
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methods (OLS regression, PCA, orthogonal regression,
etc.). The use of these different methods leads to consider-
able variations in the results (Sackville Hamilton et al. 1995,
Matthew et al. 1995). To eliminate these methodological
differences and to concentrate on the species-specific re-
sponse patterns, two different approaches were used to
analyze the ln(N)–ln(d) relationship: OLS regression anal-
ysis using the model ln(N) � a � b � ln(d) and through the
difference quotient r � ln(N2/N1) � ln(d2/d1). The allomet-
ric coefficients r therefore deviate for procedural reasons,
e.g., from the coefficient b determined by OLS regression,
and do not lend themselves to unconditional comparison
with the coefficient r � �1.605 determined by Reineke
(1933) either. This is because the Reineke relationship is
based on the OLS regression of the ln(N)–ln(d) pairs of
variates. The ranking of the species concerning the b and r
values remains the same when using different methods for
parameter estimation. Still, neither approach will necessar-
ily produce exactly the same results unless the ln(N)–ln(d)
pairs of variates are exactly on a straight line.

The bootstrap method presented in this study allows us to
use OLS regression, which ensures comparability of our
parameter estimates to Reineke’s r � �1.605 and to the
results of most preceding studies (Sterba 1981, Bergel 1985,
Zeide 1985, von Gadow 1986, Sterba and Monserud 1993).
This method introduces a possibility to estimate realistic
parameter confidence intervals under conditions that defi-
nitely forbid the application of standard inference statistics
that are normally applied with OLS. Such conditions, where
a data set for evaluation is partly burdened with autocorre-
lation, are inevitably quite frequent when dealing with long-
term research plots.

If adherence to the rules by Reineke (1933) and Yoda et
al. (1963) were to continue, species-specific differences
would certainly be ignored and the path toward a morpho-
logic-allometric explanation of the competitive mechanisms
in pure and mixed stands would remain obstructed. The
study goes beyond mere falsification of Reineke’s rule and
proceeds to prove species-specific reaction patterns in
size–density allometry. Zeide (1985) introduces the quo-
tient r � �N/N � �d/d as a measure of self-tolerance in tree
species growing in pure stands. The larger the r value, the
lower the number of dying trees �N/N with defined diam-
eter increment �d/d will be, and the greater the self-toler-
ance of the species in pure stands. The ranking we revealed
for the mean species-specific r values expresses the fact
that, in comparison to Norway spruce and common beech,
the species common oak and Scots pine are more tolerant
with trees of the same species. For instance, in common
beech stands, a mean diameter increase of 1% causes a
decrease in the number of stems by 1.69%. Given the same
diameter increment, the decrease in the number of stems is
1.47, 1.38, and 1.23 for Norway spruce, Scots pine, and
common oak, respectively, which means 13%, 18%, and
27% lower than for common beech. That underlines the low
self-tolerance of beech and its space-consuming investment
strategy. The causes for this are seen in its wider and more
dynamic lateral crown extension. The reverse side of a

species high efficiency in space sequestration is that forest
management has to provide much growing space to achieve
a particular stem dimension. The self-thinning process of
common beech is very fast and continuous, without any
great oscillations. This prevents the occurrence of large gaps
in the crown canopy and guarantees common beech a more
uniform presence in the area. By contrast, common oak at
first maintains a higher density level even in approximating
maximum density, but dies in waves. In mixed stands, this
gives common beech a competitive advantage over, e.g.,
common oak, the reason being that the cyclic, wavelike
mortality in common oak leaves gaps in the crown canopy
that common beech is able to fill quickly in the mixed stand.
Findings about the allometry under self-thinning in pure
stands may therefore be considered an informative bench-
mark for the species-specific response patterns in mixed
stands (Puettmann et al. 1992, Sterba and Monserud 1993).
For mixed stands on comparable sites, mean r values de-
termined for common beech, Norway spruce, Scots pine,
and common oak came to r � �0.40, �1.02, �1.06, and
�2.01, respectively, which indicates a reversal of the situ-
ation in pure stands, i.e., common beech � Norway
spruce � Scots pine � common oak (Pretzsch 2005). Com-
pared with pure stands, in mixed stands r of common beech,
Norway spruce, and Scots pine increases by 76, 31, and
23%, respectively, whereas that of common oak decreases
by 64%. Great expansion abilities under interspecific con-
ditions (e.g., common beech) evidently guarantee great as-
sertive power in the mixed stand. Low sequestration effec-
tiveness in the pure stand (e.g., common oak) is obviously
combined with low assertive power in the mixed stand
(Zeide 2004). This underlines that the species-specific al-
lometry and space sequestration are crucial for the compet-
itiveness and success of a species in pure and mixed stands,
even more important than its mere primary production (Baz-
zaz and Grace 1997).

Concerning our data, we have to point out that A-grade
plots are not completely untreated, because dead, dying, and
unsound trees are removed, mostly to prevent the spread of
diseases (cf. Methods). Nevertheless, these plots were def-
initely established and maintained for observing self-thin-
ning. Thus, they document at least a very close approxima-
tion to maximum stand density.

Conclusions

In view of the individual species’ slopes, stand density
estimation algorithms, founded on generalized allometric
relations, appear unsuitable. Stand density management di-
agrams (SDMD), which are applied for many species as
tools for regulating stand density, use the self-thinning line
with generalized scaling exponents as upper boundary and
are the most prominent silvicultural application of the self-
thinning rule (Oliver and Larson, 1990). Bégin et al. (2001)
list for a considerable number of tree species available
SDMDs as guides for stand management. As long as those
SDMDs ignore individual species allometry, flawed density
control and contraoptimal thinning will result for the four
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considered species. Equivalent shortcomings apply for
prognoses by growth models, which ignore individual spe-
cies’ scaling exponents. Models that base thinning and
mortality algorithms on generalized scaling exponents (Eid
and Tuhus 2001, Xue and Hagihara 2002, Yang and Titus
2002) should be replaced by more flexible approaches (Pitt-
man and Turnblom 2003, Zeide 2001).

Reineke’s Stand Density Index (Reineke 1933), founded
on the species invariant slope r � �1.605, is questionable.
The strength of SDI as a measure of density is that it takes
mean diameter and number of stems into account (Avery
and Burkhart 1983, Ducey and Larson 1999, Zeide 2004).
The mean diameter serves as an expression of the allometric
development phase of the stand, thus the observed number
of stems is related to the corresponding allometric phase of
the stand. In Europe, SDI extrapolates an observed stem
number to a fixed index diameter of 25 cm, whereas 25.4
cm is used in Anglo-American forestry. The disadvantage of
the SDI is that it generally assumes the coefficient b �
�1.605 to be valid. Wherever this allometric coefficient
fails to apply there will be severe errors in stand density
estimates. This study shows that, in untreated fully stocked
pure stands of common beech, the b value is lower than the
generalized Reineke value b � �1.605. Although the de-
viations from �1.605 are only close to significant for com-
mon oak and Norway spruce, our results concerning differ-
ences among species suggest that at least one of these
species’ slopes differs from Reineke’s generalized value,
too.

If species-specific allometry is ignored, serious errors in
the estimate and control of density when using SDI � N �
(25/d)�1.605 may be the consequence. Figure 6 illustrates the
concept of the SDI on the ln–ln scale. Let us assume O1

stands for a pair of values consisting of the mean diameter
d and the number of stems N in an old stand for which the
SDI is to be found. Proceeding from the point O1, a straight
line with slope �1.605 (solid line) may then be extrapolated
up to the index diameter 25 cm and the SDIR(O1) (R stands
for Reineke) may be read off. In analogy to the above, the
same can be done with the N–d value pair O2 of a young
stand. Again, from point O2, proceed to extrapolate up to the
index diameter of 25 cm. Provided the ln(N)–ln(d) devel-
opment of the stands obeys the slope b � �1.605, then
SDIR(O1) � SDIR(O2). Let us assume the slope of the
ln(N)–ln(d) relationship were actually b � �1.8 (dotted
line). Then for O1 the actual (SDIact) would be considerably
higher than SDIR calculated on the basis of the Reineke
exponent. In the case of O2 we would have SDIact(O2) �
SDIR(O2).

If the SDIact � N � (25/d)b, which is calculated with the
use of the tree species-specific allometric coefficient b, is
set in relation to SDIR � N � (25/d)�1.605 the result is

k �
SDIact

SDIR
� �25

d �
b�1.605

. (19)

The quotient k depends on the mean diameter d and on the
difference between the actual species-specific and the as-

sumed allometric coefficient b � �1.605. Table 5 provides
the correction factor k for various mean diameters d and
different actual slopes b � �1.105 up to �2.105 (cf.
Equation 19). No extrapolation on the basis of the straight
line ln(N)–ln(d) is required if the mean diameter of any
stand to be assessed comes to 25 cm. In this case and if the
actual b value equals �1.605, the SDI will give correct
density estimates (k � 1; central vertical and horizontal
lines of the table). By contrast, if the actual curve drops
more steeply than the slope (bact � �1.605), then stands
with diameters over 25 cm will have a tendency to be
underestimated if the SDI is used, and vice versa for stands
with lesser diameters (see upper part of Table 5). This bias
will increase with rising �b and will, moreover, be the
greater the more the observed mean diameter deviates from
the index diameter of 25 cm. For actual b values of �2.105,
the SDI calculated by Reineke would have to be corrected
by 0.45 (d � 5 cm) or 1.41 (d � 50 cm) to obtain the correct
SDI. If the actual decrease in the number of stems is less
than that from the Reineke relationship (bact � �1.605)
there will be a reversal of the relationship (see lower part of
Table 5). In the latter case, the SDI values according to
Reineke (1933) will have to be raised for stands with d � 25
cm and lowered for stands with d � 25 cm.

The use of Reineke’s rule and SDI with b � �1.605 for
determination of maximum density (Sterba 1975, 1981,
1987), control of stand density (Bergel 1985, Kramer and
Helms 1985), or modeling of stand development (Pretzsch
2002b) is therefore called into question. For the SDI in

Figure 6. Bias in the determination of Reineke’s SDI. If the
ln(N)–ln(d) relationship of a stand follows the slope b � �1.605 (solid
line), the observed ln(N)–ln(d) pairs of variates O1 and O2 will result in
correct SDI values, i.e., SDIR(O1) � SDIR(O2). If the allometric rela-
tionship is steeper (b < �1.605, dotted lines), this will result in an
underestimate of SDI for diameters d > 25 cm and an overestimate for
diameters d < 25 cm when slope b � �1.605 according to Reineke
(1933) is used (SDIR� SDI on the basis of Reineke’s generalized b �
�1.605, SDIact � SDI on the basis of the stand specific b value; the
index diameter in Europe is 25.0 cm, in the United States 10 inches �
25.4 cm).
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Norway spruce stands, Sterba (1981), using the Bavarian
yield tables for Norway spruce by Assmann and Franz
(1963) and assuming b � �1.605, calculated mean values
of 970, 1,081, 1,203, and 1,336 for sites with 28, 32, 36, and
40 m top height at age 100 years. These values are quoted
here to illustrate the extent to which values may be biased
when erroneous b values are being used. Assuming we
determine, according to Reineke, the SDI of a stand with
mean diameter 10 cm to be 1,300, and assuming further that
this stand actually follows a straight line with b � �1.805,
then the determined SDI of 1,300 would have to be reduced
by k � 0.83 (cf. Table 5). The correction of the bias would
therefore signify a shift of values from the upper end
(SDI � 1,300) to the lower end (SDI � 1,079) in the range
of SDI values observed in Central European Norway spruce
stands.
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