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On the use of growth and decay functions

for modelling stem profiles

C. Brink and K. von Gadow

Summary

One of the most useful tools for modelling the effects of
environmenial and siand treatment factors on stem form is a
simple taper equation. This article presents four new faper
functions for modelling stem profiles. These are not derived de
novo, but from known growth and decay functions. The paper
demonstrates that it is possible to modify any growth or decay
function with certain structural properties to serve as a taper
function.

Zusammenfassung

Wenn man die Auswirkungen von Umgebungs- und Behand-
lungsfaktoren auf die Form von Baumschiiften untersuchen
will, empfiehlt sich die Anwendung einer flexiblen Schafiglei-
chung mit begrenzter Parameterzahl. Eine Spline Approxima-
tion ist fiir diesen Zweck unbrauchbar. In diesem Beitrag
werden vier neue Schaftgleichungen vorgestellt. Die Gleichun-
gen werden nicht de novo, sondern von bekannten Wachstums-
und Zerfallfunktionen abgeleitet. Es wird gezeigt, daf} es mog-
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lich ist, jede Wachstums- oder Zerfallfunktion mit bestimmten
strukturellen Eigenschaften so zu modifizieren, daf3 sie als
Schaftgleichung verwendet werden kann.

1. Introduction

Foresters need to be able to estimate the stem form of trees
and how it is affected by environment and stand treatment.
One method of modelling the stem form of a tree involves the
use of a taper, or stem profile equation which expresses radius
r as a function of height h.

One of the first attempts to model the stem profile is
BEHRE’s (1923) hyperbola (see PRODAN (1965), p. 62):

X
9= Trox w1
where
x = relative tree height;
q = relative tree diameter;

a,b = parameters to be estimated.
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More recent attempts to inodel stem profiles include

ORMEROD's (1973) equation
H-hTp

-2 (1.2)

d=D

where

d = diameter (cm) at tree height h (m);

D = diameter (cm) at breast height k (m);
H = total tree height (m) with 0 < h < H;
p = parameter to be estimated (p > 0);

k = 1.35 (breast height).

Because of its simplicity, ORMEROD’s equation appears to be
rather popular (REED and BYRNE (1985)). Other noteworthy
models of stem taper are, for example the dual equation
system proposed by DEMAERSCHALK and KozAK (1977), a
system using 4th degree polynomials (MADSEN (1982)) and a
recent approach involving the Chapman-Richards function
(BINGING (1984)).

We find that a taper equation is a useful tool for modelling
stem form. On the one hand, it is flexible enough to provide
good estimate of radius at different heights, on the other hand
it is simple enough to allow parameter smoothing, conse-
quently permitting better insight into the relationship between
stem form, tree dimensions and stand treatment.

In this article we present four new taper functions. Whereas
the general tendency seems to be to derive such functions de
novo, we take the methodologically simpler approach of mod-
ifying known growth and decay functions to serve as taper
functions. The motivation for this approach is best explained
by reference to an idealized stem form, as pictured in Fig. 1.1,
which we call the target shape. In Fig. 1.1, h indicates tree
height and r tree radius; b is breast height (1.35 m) and 1}, is
radius at breast height; H is the total tree height and r, the
radius at the base of the stem (the initial radius). So if we view
r as a function of h we have r(0) = 1, 1(b) = 1, and r(H) = 0.
The target shape is monotone decreasing, with the curvature
at first anti-clockwise, then zero at a point of inflection, and
then clockwise. In Fig. 1.1 the point of inflection occurs at the
point (1.i), where height is I and the corresponding radius r(I)
is i. We call that part of the target shape where 0 < h < I the
initial part, and the part where I = h < H the terminal part of
the target shape. The point to note is that change of curvature

=Y

Initial VPart

Terminal Part

Fig. 1.1. Idealized stem profile or »target shape«.

takes place (mathematically: the second derivative of r
changes sign). Whenever this happens, the function in ques-
tion exhibits an S-shape around the point of inflection, no
matter what the orientation of the function is with regard to
the axes. In Figure 1.1 the S-shape is best seen by rotating the
figure anti-clockwise through ninety degrees. It is well known
that an S-shape may be modelled by a variety of functions,
usually viewed as growth functions. In principle, then, any one
of these functions can also be used as a taper function model-
ling stem forms. In practice, of course, the choice of such
functions depends on considerations such as possible physical
interpretation of parameters and techniques available for

‘parameter estimation.

In this article we modify in § 3 the logistic function and in §4
the Weibull growth function for use as taper functions.
Beforehand, in §2, we obtain two taper functions by modify-
ing a decay function.

We test each of the four taper functions presented here
against ten Eucalyptus cloeziana trees, the measurements of
which are listed in Table 1.1. The results are listed in tables,
one for each model. In line with the minimum data usually
available for a particular tree, we list in these tables diameter
at breast height over bark (DBH O-B) and total height (H in
Figure 1.1). However, for the testing of the models we do not

Table 1.1. Heights (h) and radii (r, under bark) of 10 Eucalyptus cloeziana trees.

Tree number

116 121 127 128 138

139 142 147 149 152

h r h r h T h r h T
m cm m

h r h r h T h r h r

cm  m cm  m cm m cm  m cm  m cm  m cm  m cm m cm
0 9.78 0 1143 0 838 0 775 0 851 0 737 0 952 0 6.86 0 991 0 9.78
06 88 06 1029 06 737 06 673 06 762 06 673 06 88 06 635 06 876 06 09.02
1.2 8.38 1.2 940 12 686 1.2 6.10 12 6.60 1.2 610 12 813 1.2 546 12! 826 12 - 851
1.35 8.36 1.35 934 1.35 681 135 6.02 135 6.14 135 6.06 135 792 135 526 135 821 1.35 845
24 800 24 88 24 673 24 597 24 559 24 58 24 762 24 508 24 775 24 8.13
49 7.37 49 787 49 622 49 508 49 508 49 508 49 686 49 483 49 737 49 7.24
7.3 6.60 7.3 724 73 559 73 432 73 432 73 457 73 622 73 394 73 635 73 6.60
9.8 5.97 98 635 98 495 98 35 98 368 98 381 98 546 98 3.18 98 572 9.8 597
12.2 5.08 122 559 122 419 122 292 122 292 122 3.05 122 457 122 152 122 495 122 5.08
146 432 146 444 146 330 "152 140 149 140 152 152 146 381 131 0 146 394 146 4.19
7.1 330 17.1 343 171 165 186 0 180 0 183 0 17.1 1.90 17.7 190 171 2.79
201 1.65 192 165 19.8 0 198 0 210 0 18.9  1.40
216 0 21.3 0 207 0
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Fig. 2.1. Initial part and termina
part of target shape viewed separate-
ly. Both may be regarded as decay
functions.
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use DBH O-B but ry, — radius at breast height under bark. In
fact, all the radii listed in Table 1.1 are taken under bark.
Moreover, although nothing in the mathematical development
depends on this, we try where possible to arrange matters in
such a way that the taper function passes precisely through the
points (b, r,) and (H,0).

2, Application of the classic decay function

We start out by noting that if we view the initial part and the
terminal part of the target shape separately, as in Figure 2.1,
both of them may be considered as decay functions. Standard
models of decay are therefore applicable in both cases. We
choose to use what we call the classic decay function, namely
the solution of the differential equation

% =k (y-B), (2.1)

which says that the rate of change of y as a function of x is
directly proportional to the difference between y and some
constant (upper or lower) limit B. (Example: Newton’s law of
cooling says that the rate of cooling of a warm body is directly
proportional to the difference between its own temperature
and the (constant and lower) temperature of its environment.)

Using (2.1), we model the initial shape by a function « of h,
using i as a lower limit and g as an initial value. So (2.1)
becomes

da

@ = P-) (>0 @2)

and standard methods yield the solution
a(h) =i+ (1,-1) e 23

Similarly we model the terminal shape by a function B of h
using i as an upper limit and H as an initial (sic/) value. In thi:
case the differential equation

dp . :

= —9G-p) (@>0) (24
yields the solution

B (h) =i—ied®™™. Q.5

The models o and 3 are illustrated in Figure 2.2. Note tha
neither passes precisely through the point of inflection; this i
of course a conséquence of using i as a limiting value.

Note further that in each case, the proportionality constant i
easily determined from one further data point. Thus if (X, x) i
any data point in the initial part, and (Y, y) any data point i
the terminal part, then (2.3) and (2.5) respectively show tha

ok e Y 2.6
p_X]n(x—i) (@
and
_ 1 i-y )
=—m P ( 1_) e

which can be used as initial values when estimating the para
meters.

A first model of the target shape may now be constructed b
the simple expedient of subtracting from « the differenc
between i and . Call the resulting function r;, then

n(h) =i+ (g —i)e ™ — jest—1), (2.8

rA

ra

Vi u
L
J
—
2
1

Fig. 2.2. Models for the initial pai
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and terminal part, respectively, c
the target shape. Both are obtaine
from the classic decay function.
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Thus 1, lies slightly below a in the initial part and slightly
above P in the terminal part. In this function rp and H are
empirically given, and the parameters i, q and p are calculated
using standard nonlinear regression methods. The function is
therefore fully determined by the data, is theoretically quite
simple, and, as is shown in Table 2.1, is fairly accurate.

A second model may be constructed from the classic decay
function by using in (2.2) a variable lower limit in place of the
constant lower limit i; the idea being to bend down the graph
of a in Figure 2.2 so as to cross the horizontal axis and thus
model also the terminal shape. And in fact such a variable
lower limit is at hand — we simply use . Rechristening « as 15,
we get in this way the differential equation

dr,
5 =P @-B).

which may be rewritten as

% +pr=pp (p>0) 2.9)

to show that it is first-order linear. Applying the standard
method of solution for this type of differential equation, and
using the initial value rg, we obtain

r(h) = i~ pﬁ-lq CahH) +[r0_ L P eﬂu] ooh (2.10)

ptq

this being our second model. Again ry and H are given and the
parameters are determined as in the first model. On the
assumption that the initial part of r, closely follows the shape
of a, and the terminal part the shape of 3, the initial values for
p and q found in (2.6) and (2.7) may be used as initial values
for parameter estimation of r, as well.

To compare the two models 1; and 15, rewrite 1, as

_i e P [ ali-H)_ ThﬂaH] 2.11
nh) =i+ (m-ie == o - , (2.11)
then it is clear that, like r;, 1, is obtained by subtracting an
auxiliary function from the classic decay function a of (2.3).
Given that p, q, h and H are all positive, we observe that

_pi_
p+q
and

<1

edb-H) _ o-phqH - q(b-H)

i
Consequently, D g_ 3 [eq(h—}n _ c—ph—pH] < jedlb-H)

and so, these being precisely the auxiliary functions subtracted
from a in (2.11) and (2.8) to obtain 1 and r, respectively, we
conclude that r, lies between « and r,. If, therefore, we take a
and P as describing precisely the initial shape and the terminal
shape respectively, then of r; and r,, the latter will be the
better model in the initial part, the former in the terminal part.
(Since B < r; < @, with @ — ry small in the initial part, and 1, —

B small in the terminal part). But of course o and [ are just.

models themselves, and so the relative accuracy of r; and r,
can in practice not be settled in this way.

Table 2.1. Fitting equation (2.8) to the 10 Eucalyptus cloeziana trees
in Table 1.1.

Tree DBH  Total i p q Error
No. O.B Height Mean
Square
116 18.0  21.64 4.856 0.0720  0.1010  0.068
121 206  21.34 7.864 03109  0.1317  0.069
127 155 19.81 6.658 0.4059 0.1330 0.070
128 13.2 18.59 4.787 0.2376 0.1297 0.081
138 13.7 17.98 4.910 03976  0.1558  0.092
139 13.2 18.29 4.837 02292  0.1503  0.047
142 17.5 19.81 6.542 0.2507 0.1540 0.049
147 119 13.10 4.442 0.2561 0.1620 0.107
149 18.0  21.03 7.216 0.2446  0.1208  0.113
152 180 2073 6.942 0.2170  0.1438  0.029

Table 2.2 Fitting equation (2.14) to the 10 Eucalyptus cloeziana trees
listed in Table 1.1.

Tree DHB  Total i P q Error
No O.B. Height Mean
Square
116 18.0 21.64 1021 0.6894  0.0650  0.027
121 20.6 21.34 13.77 1.4654  0.0518  0.056
127 155 19.81 9.00 3.1447  0.0773  0.023
128 13.2 18.59 1372 2.4542  0.0319  0.050
138 133 17.98 9.16 1.1155  0.0541  0.135
139 132 18.29 10.09  2.2126  0.0520  0.028
142 175 19.81 10.77  1.7110  0.0670  0.072
147 119 13.10 764 17711 0.0705  0.135
149  18.0 21.03 12.72  2.8174  0.0514  0.039
152 18.0 20.73 1211 21786  0.0595  0.042

In some cases it may be desired of a function modelling stem
profiles to pass precisely through selected points — e.g. radius
at breast height. For the classic decay function « this is easily
effected by using r(b) = 1y, as an initial value in (2.2) (instead
of r(0) = 1,) to obtain

a(h) =i + (1, — i) eP®D). (2.12)
For our first model ry, this easy option is not available, since r;
does not appear here as the solution of a differential equation.
But r; does, so we may use 1 (b) = ry, as an initial value in (2.9)
to obtain

pi

h) = i-Acq(h-"w[r —i+
r2( ) p+q b p

pi equru)] Pbh) (2.13)
+q

instead of (2.10). Again, for purpose of comparison this may
be rewritten as ;

BY = i4 (5 — i) epl0) _ _PL
ra(h) = i+ (r,—1) e p+q
where 1, then again appears as the result of subtracting an
auxiliary function from the classic decay function — (2.12) in
this case. For comparison Table 2.2 does for 1, what Table 2.1
did for 1.

[eq(n-m _eqc&»mmw] (2.14)
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Fig. 3.1. The target shape extended into the second and fourth
quadrants. It is assumed to be delimited by two vertical asymptotes.
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Fig. 3.2. The same graph as in Figure 3.1, but showing the new axes h’
and r'.

Table 3.1. Fitting equation (3.7) to the 10 Eucalyptus cloeziana trees
listed in Table 1.1.

Tree DBH  Total k Ty B Error
No 0O.B. Height Mean
Square
116  18.0 21.64 0.0086 11.779 27.54 0.118
121 20.6 21.34 0.0283 0.812 21.34 0.144
127 155 19.81 0.0090 20.992 22.27 0.186
128 13.2 18.59 0.0468 0.424 19.31 0.149
138 13.7 17.98 0.0518 0.174 17.98 0.169
139 132 18.29 0.0434 1.021 1899 0.103
142 17.5 19.81 0.0341 1.046 2030 0.199
147 11.9 13.10 0.0677 0.288  16.81 0.246
149 18.0 21.03 0.0157 5962 22.86 0.228
152 18.0 20.73 0.0145 7452  22.39 0.103
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3. Application of the logistic function

Recall that both models of §1 were constructed by using a
horizontal asymptote. This asymptote (the line r = i) was a
purely theoretical entity which played no part in the eventual
models, except insofar as it influenced the derivation of the
equations constituting these models. In the same spirit we now
construct a third model by using two vertical asymptotes. We
assume, namely, that if the target shape extended also into the
second and fourth quadrants it would naturally assume a shape
as in Figure 3.1, with the lines h = —Tj and h = B acting as
vertical asymptotes. In order to model this extended target
shape, we first effect a translation and re-orientation of axes
by the equations

W =h 4T,
r=r—r,

(3.1)

so that the target shape appears with respect to the new axes as
in Figure 3.2; with Ty = B + T,. We then assume that

(a) the rate of change of r’ is inversely proportional to h’; and
(b) the rate of change of r’ is inversely proportional to T; — h'.

Each of these assumptions is modelled by a differential equa-
tion. Combining these in the standard way, and presenting the
constant of proportionality as a reciprocal, we get the single
differential equation

dr’ 1
. SN 3.2
dh’ T Xh'(T; -h) (k > 0). 32

Using the initial value h' (0) = T, we obtain by standard
methods the solution

e [ h'B ]
AN s R L W e

which, translated back to the original axes, becomes

(h+ Ty B
r(h) =15- kT, In (B*h;To]'

(3.3)

The constant of proportionality is easily determined from one
further data point. E.g. from r(H) = 0 we obtain

1 (H + Ty) B]

34
wL B [EB-mT, 34

k=

which can be used as initial value in the parameter estimation
procedure.

As in the first model ry and H are empirically given. We do
not at this stage attempt to offer an interpretation of the
parameters Ty and B, except to mention that B may be related
to the concept of maximum possible height under optimum
conditions.

The perceptive reader may have noticed that the present
model is in fact a variation of the logistic model of a growth
curve. This fact may be illustrated by rotating Figure 3.2 anti-
clockwise through ninety degrees, in which case h' appears as
a function of r' in the familiar S-shape of the logistic function.
More precisely, the relationship is exhibited by the fact that

Y _ ki (T, — ), (k> 0)

ar B
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which follows directly from (3.2) by taking reciprocals, and is
of course the differential equation of which the logistic curve is
a general solution. In fact, solving (3.5) with initial valual h’
(0) = Ty yields the logistic function

_ TyTy
T (Mi-Tpe ™+ Ty

And the relationship between this function and our model
(3.3) of a taper function is that each may be obtained from the
other by using the translation equations (3.1).

Should it be required that the function (3.3) pass precisely
through a selected point, this may easily be effected by using
that point as an initial value in place of h'(0) = T,. For
example, if (3.3) is required to pass through (b,ry,), we obtain
from (3.1) the information that h'(ry — 1,) = b + T, and using
this as an initial value in solving (3.5) we get

;! 1[(h+T0)(B—b)]
kT; “LB-0) (T, +0) I

W (3.6)

r(h) = 1, — (3.7)

Corresponding to (3.4) we obtain in this case

1 (H + Ty) (B - b)
T [(B ~ H)U(T0 +hl (3.8)

An assessment of this model appears in Table 3.1.

k=

4. Application of the Weibull function

The mathematical gymnastics of 3 (Application of the logistic
function) notwithstanding, the model constructed there may
be regarded as being obtained from the logistic function by a
translation and re-orientation of axes. In effect, then, we
obtained a taper function by the simple expedient of rotating a
growth function. This is a general method which may be
applied to any growth function, and with that a whole class of
taper functions became available. For example, the known
growth functions of WEIBULL, MITSCHERLICH, VON BER-
TALANFFY and GOMPERTZ all yield corresponding taper func-
tions. In each case, the taper function obtained in this way,
inherits all the structural characteristics of the original growth
function.

Thus, for example, the taper function of 3 is symmetric
around its point of inflection, since this is a property of the
logistic function. This taper function is therefore not a satisfac-
tory model of stem forms in which the curvature of the initial
part differs from that of the terminal part. For such stem forms
we obtain in this section a taper function from the Weibull
growth function.

We use here the Weibull growth function as characterized
by YANG, KOzAK and SMITH (1978) and illustrated in Figure
4.1:

h' = B — Be /9", (4.1)

where h' is a function of r*, B is an upper limit for h’, & > 0isa
scale parameter and 8 > 0 is a shape parameter.

Adapting now to our present purposes the equations (3.1)
we effect a clockwise rotation through ninety degrees by

h'=h
) (4.2)
so that the curve of Figure 4.1 re-appears as in Figure 4.2,

where we restrict it to the first quadrant, Substituting (4.2)
into (4.1) leads to

Bln(r—1) B lna=ln [m (Blfh)], (4.3)

h'A
B* ——————————————————
& -
rl

Fig. 4.1. Characteristic S-shaped growth function, here assumed to be
modelled by the Weibull function (4.1).
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B h
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Fig. 4.2. The same graph as in Figure 4.1, but rotated clockwise,
showing new axes and restricted to the first quadrant.

Table 4.1. Fitting equation (4.8) to the 10 Eucalypius cloeziana trees
listed in Table 1.1.

Tree DBH  Total a B B Mean
No. O.B Height Square
Error
116 18.0 21.64 136.290  0.669  173.628 0.021
121 20.6 21.34 13.374 0.789 43.799  0.076
127  15.5 19.81 12.400  0.633 42,346 0.017
128 132 18.59 297.614 0.560 185.194 0.089
138 13.7 17.98 §.000 0.774 33.671 0.031
139 13.2 18.29 164.729  0.591  149.428  0.022
142 17.5 19.81 7.500  0.758 32.667 0.041
147 119 13.10 283.700 0.452 113.842 0.110
149 18.0 21.03 37.305 0.649 71522 0.043
152 18.0 20.73 6.656  0.820 31.363  0.030

EDYV in Medizin und Biologie 1/2/1986
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then solving for r we obtain

r(h) = 1y — a exp. {% In [ln (%)]}

which is our fourth model.

(4.4)

(We briefly point out a mathematical subtlety in (4.4). The
function r is in fact undefined at h = 0, nevertheless its graph
will appear to originate at the point (0,ry). This is because 1 has

the limit-value 1y as h tends to 0. Formally: -
Iim r(h) =1,
h— 0.

We take this to be sufficient for the purpose of modelling stem
forms. At any rate, (4.6) below could be used in place of (4.4),
in which case r is defined at h = 0, and r(0) = 1, as desired).

In this model, as in that of §3, we suggest that B may be
related to maximum possible height. With B and 1y taken as
known, the other parameters may be estimated by the same
methods as is used for the Weibull growth curve. Equation
(4.3), in fact, yields such a method. Let

Y:]n[ln (B%F)]

X=In(ry-r) (4.5)
M= p

C=—flhna

then (4.3) appears in the form Y = MX + C. Use data points
to plot X against Y, then fit a straight line through these points
(e.g. by using least squares). This yields M and C, and then
from (4.5) we obtain

B=Mand a=e"

It is possible to force the function (4.4) to pass precisely
through a selected point. For example, if (4.4) is required to
pass through (b, 1), this may be effected by forcing the
corresponding straight line Y = MX + C to pass through the

point (ln (ro ~ 1), In [ln (B]E b)]) Such a restriction on

the straight line fitted through the (X, Y) points may of course
have the effect that the overall fit of (4.4) to the original data is
not the best possible with this method. This would be the price
to pay for forcing r(h) through a selected point.

Another way of forcing (4.4) through, say, (b, r,) would be to
interpret the origin in Figure 4.1 not as the point (0, 1p) but as
the point (b, ry). Instead of the equations (4.2) we then have

h"=h-b
=T =T (4.6)
which leads in the same way as before to
Bln (r,—1)—Pflna=1In []n (B_—(]I?——Bj)] 4.7)
and then to
1 B
r(h) = 1, — a exp {? In []n (m)]} (4.8)
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The equations corresponding to (4.5) are then

v = [in (5=g-5)]

X =ln(rp,—1) (4.9)
M=
C=-flna

An assessment of this model appears in Table 4.1. Note that
(4.8) is undefined for 0 < h < b, so that this model in effect
ignores the stem profile beneath breast height. Measurements
below breast height were therefore disregarded when calculat-
ing the mean square errors listed in Table 4.1. (Note further
that in fact (4.8) is also undefined for h = b, but that the
situation is entirely analogous to that which obtains for h = 0
in (4.4), and that the same comments concerning limits there-

fore apply.)

5. Conclusion

We briefly summarize here the main features of each of the
four models presented in this article.

The first model, given by equation (2.8) is obtained from
two classic decay functions by subtraction — simple enough,
but not very elegant. The function has three parameters, two
of which are shape parameters for the initial part and the
terminal part respectively, and the third is intended to approx-
imate the radius at the point of inflection. Given extra data
points in the initial part and the terminal part, respectively,
there are simple formulae giving initial values for estimating
the shape parameters. The function does not pass precisely
through total height (H:0), nor through radius at breast height
(b;ry), and it cannot be forced to do so. Because of its
simplicity, the square of this function is analytically integrable.
If, therefore, we view the bole of a tree modelled by this
function 1; as being represented by the volume of revolution
obtained by revolving r; around the horizontal axis, then

H
volume = = { [r; (h)]? dh. (5.1)
0

Thus, given the integral of ry(h)’, finding volume is a simple
calculation.

The second model, given by equation (2.14), arises as the
solution of a differential equation. Like the first model it has
three parameters, two for shape and one for size. Again the
shape parameters are easily initialized given extra data points.
In this case, too, the square of the function is analytically
integrable. In addition, and here the second model has the
advantage, the function passes precisely through the standard
measurement point (b;r,), though not precisely through (H;0).

The third model, given by equation (3.7), may be viewed
either as arising from a differential equation (which in turn
arises from seemingly reasonable assumptions), or as arising
directly from the logistic function by a translation and re-
orientation of axes. The function has three parameters, one
for shape and two for size. One of the size parameters does not
have an obvious physical interpretation. The shape parameter
is easily initialized from an extra data point. The function
passes precisely through (b;ry). If (3.8) is accepted as giving
the precise value of k, then the function passes precisely
through (H,0) as well.



BRINK/VON Gapow, On the use of growth and decay functions for modelling stem profiles 27

The fourth model, given by equation (4.8}, is obtained
directly from the Weibull growth function by translation and
re-orientation. It has three parameters, one for shape, one for
scale and one for size. It does not arise from a differential
equation, and there is no simple initialization procedure from
a single data point. The function passes precisely through
(b;ry), but this involves ignoring the stem profile beneath
breast height. The function does not pass precisely through
(H.,0).

For a simultaneous comparison of all four models we pre-
sent in Table 5.1 a summary of the four previous tables (MSE
= mean square error). For this purpose we count a function as
providing a »good fit« of a particular tree if it has MSE less
than 0.1. On the basis of this table it would seem that the
second and the fourth models are the most successful. But the
sample of the trees used here is too small to give a definite
verdict.

The main point of this article has been to show that taper
functions modelling stem profiles may be obtained by using
known growth and decay functions. We see in this a
methodological simplification of the search for taper func-
tions. There may not be a single »correct« or even »best« taper
function — what is best may vary from one context to another.
In our approach one may choose any growth or decay function
having the structural properties required, and modify it to
serve as a taper function.

We conclude with the remark that using growth or decay
functions for obtaining taper functions may also lead to further
taper functions. To illustrate this point, note that there is a
structural similarity between the last two models (both
obtained from growth functions). The third model, according
now to equation (3.3), may be rewritten as

(5.2)

r(h) =1 *KLTI [ln ('Bl:j_h) + In (h ;.OTO)].

And the fourth model, according to equation (4.4), may be
rewritten in the form

(h) = 15—« [In (%)]m

Comparison of these two equations, (5.2) and (5.3), then
shows that both models are of the form

i(h) = 19— CF [m (E-?—h)]

(5.3)
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Table 5.1. Summary of previous tables.

model 1 model2 model 3 model 4
Arithmetic mean
of MSE’s 0.0725 0.0607 0.164 0.048
Number of MSE’s < 0.1 8 8 0 9
Smallest MSE 0.029 0.023 0.103 0.017
Largest MSE 0.113 0.135 0.246 0.110

where C is some constant and F is some function. That is, in
both cases a taper function arises as some function F of

B
In (ﬂ) In (5.2) F is a linear function, in (5.3) F is

a power function. So the models are similar in form, and differ
in content only insofar as they modify

i (5-%)
B-h
in different ways, where B is some upper limit on h. Investigat-

ing other such modifications may be a fruitful line of further
research.
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