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Using semi-global matching point clouds to estimate growing
stock at the plot and stand levels: application for a
broadleaf-dominated forest in central Europe
Christoph Stepper, Christoph Straub, and Hans Pretzsch

Abstract: Dense image-based point clouds have great potential to accurately assess forest attributes such as growing stock. The
objective of this study was to combine height and spectral information obtained from UltraCamXp stereo images to model the
growing stock in a highly structured broadleaf-dominated forest (77.5 km2) in southern Germany. We used semi-global matching
(SGM) to generate a dense point cloud and subtracted elevation values obtained from airborne laser scanner (ALS) data to
compute canopy height. Sixty-seven explanatory variables were derived from the point cloud and an orthoimage for use in the
model. Two different approaches — the linear regression model (lm) and the random forests model (rf) — were tested. We
investigated the impact that varying amounts of training data had on model performance. Plot data from a previously acquired
set of 1875 inventory plots was systematically eliminated to form three progressively less dense subsets of 937, 461, and
226 inventory plots. Model evaluation at the plot level (size: 500 m2) yielded relative root mean squared errors (RMSEs) ranging
from 31.27% to 35.61% for lm and from 30.92% to 36.02% for rf. At the stand level (mean stand size: 32 ha), RMSEs from 14.76% to
15.73% for lm and from 13.87% to 14.99% for rf were achieved. Therefore, similar results were obtained from both modeling
approaches. The reduction in the number of inventory plots did not considerably affect the precision. Our findings underline the
potential for aerial stereo imagery in combination with ALS-based terrain heights to support forest inventory and management.

Key words: digital aerial images, dense image matching, forest attribute estimation, random forests, linear regression, feature
selection, wall-to-wall mapping, inventory design, sampling density.

Résumé : Les nuages de points basés sur des images denses présentent un grand potentiel pour évaluer avec précision les
attributs forestiers tels que le volume sur pied. L'objectif de cette étude était de combiner la hauteur et l'information spectrale
obtenues à partir d'images stéréo captées avec l'UltraCamXp pour modéliser le volume sur pied dans une forêt très structurée
dominée par des feuillus (77,5 km2) dans le sud de l'Allemagne. Nous avons utilisé la méthode d'appariement semi-globale afin
de générer un nuage de points dense, puis nous avons soustrait les valeurs d'élévation obtenues à partir d'un scanneur laser
aéroporté (SLA) afin de calculer la hauteur du couvert forestier. Soixante-sept variables explicatives ont été obtenues à partir du
nuage de points et d'une ortho-image pour être utilisées dans le modèle. Deux approches différentes ont été testées : un modèle
de régression linéaire (ml) et un modèle de forêts aléatoires (fa). Nous avons étudié l'impact de différentes quantités de données
d'entraînement sur la performance des modèles. Les données des placettes provenant d'un inventaire réalisé précédemment,
comptant un ensemble de 1875 placettes, ont été systématiquement éliminées pour former progressivement trois sous-ensembles de
moins en moins denses comptant respectivement 937, 461 et 226 placettes d'inventaire. L'évaluation des modèles à l'échelle de la
placette (taille : 500 m2) a donné des erreurs quadratiques moyennes relatives allant de 31,27 % à 35,61 % pour ml et de 30,92 %
à 36,02 % pour fa. À l'échelle du peuplement (taille moyenne du peuplement : 32 ha), des erreurs quadratiques moyennes relatives
de 14,76 % à 15,73 % pour ml et de 13,87 % à 14,99 % pour fa ont été observées. Ainsi, des résultats similaires ont été obtenus à partir
des deux approches de modélisation. La réduction du nombre de placettes d'inventaire n'a pas eu d'incidence considérable sur
la précision. Nos résultats soulignent le potentiel de l'imagerie aérienne stéréo combinée à des hauteurs de terrain obtenues au
moyen d'un SLA pour appuyer l'inventaire et la gestion des forêts. [Traduit par la Rédaction]

Mots-clés : images aériennes digitales, appariement d'images denses, estimation d'attributs forestiers, forêts aléatoires, régression
linéaire, sélection de caractéristiques, cartographie en couverture complète, plan d'inventaire, densité d'échantillonnage.

1. Introduction
Sustainable management of the multiple functions and services

of highly structured temperate forests requires spatially explicit
information about their state and development. In recent decades, a
lot of effort has been put into studies in which airborne laser
scanning (ALS) was investigated for characterizing both the verti-
cal and horizontal structures of different forest types. Further-

more, many such studies have focused on the integration of ALS
into forest inventories. Comprehensive review articles covering
this field have been published by Lim et al. (2003), Næsset et al.
(2004), Hyyppä et al. (2008), and Wulder et al. (2008). Detailed
insights into the concepts of ALS and various forestry case studies
are described in Maltamo et al. (2014).

A great number of studies have demonstrated the applicability
of ALS for estimating various forest attributes using the area-
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based approach (ABA). White et al. (2013a) presented a synoptic
view of the ABA and the processing steps that it requires. Within
the ABA, several variables related to the statistical distribution of
canopy heights, derived either from point clouds or from surface
models, are used as predictors for the estimation of forest attri-
butes (e.g., growing stock (GS)). Basically, two different types of
statistical methods can be distinguished: (i) parametric methods,
most often linear regression (lm; used by, e.g., Nilsson (1996),
Means et al. (2000), Næsset et al. (2005), Maltamo et al. (2006), and
Lindberg and Hollaus (2012)) and (ii) nonparametric methods,
where various k-nearest neighbor (kNN) approaches or random
forests (rf) were mostly implemented (used by, e.g., Packalen and
Maltamo (2006), Hudak et al. (2008), Breidenbach et al. (2010),
Latifi et al. (2010), Hudak et al. (2012), and Penner et al. (2013)).

A sufficient amount of field data is necessary for successful
model calibration, i.e., to link remotely sensed data to the forest
attribute(s) of interest. Field sampling strategies must, therefore,
strive to capture the entire range of variability over the total area
being considered. However, as fieldwork is costly and time con-
suming, one aims to reduce the number of inventory plots gath-
ered to the number that is actually essential for sound estimations.
Up to now, just a few studies have focused on this task, and with
regard to airborne remote-sensing systems, ALS was employed
most often. Gobakken and Næsset (2008) assessed the effect of
reducing the number of field plots used to make stand-level pre-
dictions and reported only minor accuracy losses when the num-
ber of plots was reduced by up to 50%. Hawbaker et al. (2009) and
Maltamo et al. (2011) emphasized the benefits of a stratified sam-
pling design, using the ALS data as auxiliary information for
stratification. In the latter study, a substantial reduction in the
number of plots was possible without adverse effects on model
performance. Strunk et al. (2012) evaluated the effect of different
sample sizes on the precision of a regression estimator for se-
lected forest variables, e.g., volume. The authors applied a simu-
lation approach and found that reducing the sample size induces
noticeable losses of model precision.

Recently, several research studies have emphasized the poten-
tial of dense point clouds derived from aerial stereo images as a
possible alternative to ALS (e.g., Leberl et al. 2010). This develop-
ment has been instigated by a number of different innovations
(Haala and Rothermel 2012): (i) the introduction of digital cameras
in aerial surveys allows for the acquisition of images with a large
degree of overlap and a good signal-to-noise ratio, (ii) recent im-
provements in matching algorithms such as pixelwise semi-global
matching (SGM; Hirschmüller 2008) enable the generation of dense
photogrammetric point clouds with high levels of accuracy, and
(iii) rapid progress in hardware capacity enables the processing of
large image blocks and the derived 2.5D products.

A summary of recently published studies dealing with image
matching and forest attribute estimation is provided in Table 1.
These studies, mostly conducted in boreal forests, have verified
the potential of image-based 2.5D information as an alternative
to ALS for use in forest attribute estimation. Bohlin et al. (2012)
followed the ABA suggested by Næsset (2002) to estimate tree
heights, stem volume, and basal area in a coniferous forest in
southern Sweden. They derived metrics related to canopy height,
density, and texture from the image-based height data and used
them as explanatory variables in regression analysis. For two
other studies, both conducted on the same test site in southern
Finland, an image-based canopy height model (CHM) served as the
input for the extraction of explanatory variables at the plot level.
In both studies, different kNN approaches were applied as statis-
tical methods for imputation (Järnstedt et al. 2012; Vastaranta
et al. 2013). Working at a test site with mixed forests in southern

Germany, Straub et al. (2013a) used the spectral information of
airborne imagery as auxiliary data for a stratified linear regression.
Distinct models for conifer- and broadleaf-dominated sample plots
were generated to estimate the GS and basal area by means of height
and canopy cover metrics together with a surface-roughness metric,
derived from image-based height measurements. Nurminen et al.
(2013) used explanatory variables from image-based point clouds and
examined the performance of the rf algorithm for the prediction of
forest attributes at the plot level.

White et al. (2013b) outlined both the benefits (e.g., additional
spectral information, lower costs, high return frequency) and the
limitations (e.g., necessity for an ALS-based digital terrain model
(DTM) for height normalization and restriction to 2.5D informa-
tion of the outer canopy surface) of image-based point clouds for
forest inventory applications. They emphasized the applicability
of these data in the ABA for forest attribute estimation and high-
lighted some key future research questions. According to the au-
thors, more research is needed in a variety of forest types and
stand conditions to prove the capability of image-based point clouds
in the ABA. Moreover, Straub et al. (2013a) pointed out that image-
based height information gained from state-of-the-art matching
algorithms such as SGM might potentially describe the canopy
surface in more detail, which is desirable when using these data to
estimate GS. Furthermore, few studies have used both height- and
structure-related information in combination with spectral data
from stereo imagery as auxiliary information.

Therefore, we chose to estimate the GS at the plot and stand levels,
using UltraCamXp stereo images for a large and highly structured
broadleaf-dominated forest area (77.5 km2) in southern Germany. GS
here refers to the total merchantable timber volume in cubic metres
per hectare (m3·ha−1), defined as the inside-bark volume of all stems
and branches with a top diameter equal to or greater than 7 cm. The
main objectives of the present study were as follows:

– application of SGM to generate a very dense 2.5D point cloud
that would provide a detailed characterization of the sur-
face structure of the forest canopy;

– examination of several spectral features computed from the
orthoimagery as additional explanatory variables for esti-
mating GS, in combination with height and structural vari-
ables derived from the image-based height data;

– comparative testing of rf vs. ordinary least squares lm to
estimate GS at the plot level, as well as at the stand level;

– investigation of the effect of different sampling densities,
i.e., systematically reduced numbers of terrestrial inventory
plots, on the precision and accuracy of the estimation of GS.

As GS is one of the most important forest attributes, we focused
on this characteristic throughout the study. All remote-sensing
data (i.e., the aerial stereo images and the ALS-based DTM) were
acquired as part of the official surveys conducted by the Bavarian
State Office for Surveying and Geoinformation. The field measure-
ments employed in this study were obtained from the regularly
updated inventory data gathered by the Bavarian State Forest
Enterprise. Thus, the findings of this study are relevant both for
forest research and for practical applications.

2. Materials

2.1. Study area
This study was conducted within the Steigerwald test site

(49°55=N, 10°35=E) in the northwestern part of Bavaria, Germany
(Fig. 1). The test site comprises a total area of 120 km2, and the
terrain is best described as a high plain (consisting mainly of
Upper Triassic sandstone layers) gently sloping eastward and in-
terspersed with steep valley cuts (see Supplementary Fig. S1a1).

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2014-0297.
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Elevations range from 220 m to 500 m above sea level (a.s.l.) (mean
elevation: 336 m a.s.l.). The land cover within the area is largely
forest, which comprises a total of 77%. The remainder is a mixture
of agricultural land (21%) and settlement, which includes infra-
structure (2%). With regard to the forested area, about 77.5 km2

are contiguously state-owned land and can be characterized as
managed forest with a great variety of stand development stages
(see descriptive statistics of the mean age of overstory trees in
Table 3). Interpretation of aerial photographs of the test site re-
vealed various crown closures of the forest stands. Some stands

are of great ecological relevance with minimized harvesting
(Mergner 2013). Broadleaf tree species are dominant within the
test site, whereas coniferous tree species sum to a total portion
of only 20%. The most common tree species are European beech
(Fagus sylvatica L., 42%), sessile oak (Quercus petraea (Mattuschka)
Liebl., 22%), and Scots pine (Pinus sylvestris L., 10%).

2.2. Field data
The field data used in this study were recorded in 2010 as part of

the regular forest inventory conducted by the Bavarian State For-
est Enterprise (Neufanger 2011). The permanent field plots where
the data were collected are laid out in a regular grid pattern of
200 m × 200 m (Fig. 1), with each field plot representing roughly
4 ha of forested land. The plot centers are permanently marked,
and during the inventory, each particular plot location was geo-
referenced using a Trimble GeoExplorer XT GPS device. Generally,
the GPS measurements achieved accuracies with maximum
deviations of ±3–5 m (H. Grünvogel, personal communication,
4 August 2014).

For each sample plot, all relevant tree attributes were recorded
within one of three concentric circles according to certain thresh-
olds of diameter at breast height (DBH; 1.3 m). The thresholds
employed are listed in Table 2. Tree species, DBH, age class, and
vertical-layer affiliation (i.e., regeneration, understory, and over-
story) were recorded for all sample trees taller than 1.3 m. Tree
heights were measured for at least two trees from every possible
combination of species, age class, and vertical layer occurring
at that sample plot. Using the measured tree heights and DBHs,
generalized height–diameter models (established in Bavaria based
on the equation by Petterson (1955)) were adjusted at each plot. By
this method, tree heights could be modeled for all remaining
trees in the plots for which no terrestrial height measurement
was recorded. Single-tree volumes were estimated using allomet-
ric models, which were previously established in Bavaria. These
models require the DBH and tree height as independent variables, as
well as tree species specific form factors (for a detailed explanation of
the form factor, please refer to van Laar and Akça (2007)).

The finally available individual-tree data from each plot were
used to compile per-hectare values for various forest-related attri-
butes, e.g., dominant tree height (Hdom), basal area (BA), and grow-
ing stock (GS). In total, data were recorded from 1878 circular
500 m2 field inventory plots. At the outset of our investigation, we
eliminated three of these original plots from all further investiga-
tions, as a visual examination of the orthoimages showed that the

Table 1. Recently published studies where digital aerial imagery was used to estimate growing stock via the ABA.

Study

Bohlin et al. (2012) Järnstedt et al. (2012) Nurminen et al. (2013) Straub et al. (2013a) Vastaranta et al. (2013)

Test site Southern Sweden Southern Finland Central Finland Southern Germany Southern Finland
Forest type Coniferous hemi-boreal Conifer dominated Conifer dominated Mixed central-European Conifer dominated
Camera system DMC UltracamXp UltracamD UltracamX UltracamXp
Matching software Match-T SOCET SET (NGATE) SOCET SET (NGATE) LPS (eATE) SOCET SET (NGATE)
No. of plots 344 402 89 225 500
Plot radius (m) 10 9.77 Variable (5.64–20) 12.62 9.77
Observed growing

stock (m3·ha−1)
Minimum 0.5 0.4 44.7 0 43.6
Maximum 804 615.4 380.7 968.4 586.2
Mean 262 160.1 179 321.99 187.7
SD — — 92.5 225.6 94.3

Regression type Multiple linear
regression

kNN (euclidean
distance)

Random forests Stratified multiple
linear regression

kNN (random forests)

Validation method Leave-one-stand-out
cross-validation

Leave-one-out cross-
validation

Out-of-bag cross-
validation

Leave-one-out cross-
validation

Out-of-bag cross-
validation

RMSE (m3·h–1) 32.8 60.06 41.03 121.99 46.1
RMSE (%) 13.1 40.39 22.62 37.89 24.5

Note: The RMSE values from the Bohlin et al. (2012) study were calculated at the stand level.

Fig. 1. Geographic location of the Steigerwald test site in
northwestern Bavaria, Germany. The inset map displays the location
of the test site in Germany (light grey) and in Bavaria (dark grey). The
detailed map depicts the outer boundary of the test site and the spatial
distribution of the full set of forest inventory plots collected in the test
site by the Bavarian State Forest Enterprise. Note that this figure is
provided in color online.
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plots were clear-cut between when the field measurements were
taken in 2010 and when the aerial survey was conducted in 2011.
Descriptive statistics from the remaining 1875 inventory plots are
shown in Table 3.

The state-owned forested land within the test site was subdi-
vided into relatively homogeneous units, i.e., forest stands, for
forest management and silvicultural planning purposes. In accor-
dance with Neufanger (2011), these stands were delineated manu-
ally by forest-management professionals of the Bavarian State
Forest Enterprise, based on aerial-image interpretation and field
surveys in 2012, considering characteristics such as tree species
composition, developmental stage, and vertical, as well as hori-
zontal, stand structures. An intersection of the stand geometries
with the sample-plot locations of the regular forest inventory was
conducted to obtain a reasonable selection of stands that were
later used for the assessment at the stand level. We tested thresh-
olds of at least four, five, and six complete sample plots per stand
for the selection of reference stands. To arrive at a good balance
for the trade-off between covering the range of observed GSs for
the different stands and a minimum amount of sample plots per
stand for solid stand calculations, we chose the five sample plot
threshold for selecting the stand reference data in our study. In
total, 94 stands fulfilled this requirement and were further used
in the stand-level assessment.

2.3. Remote-sensing data
We used the remote-sensing data provided by the Bavarian

Office for Surveying and Geoinformation for our study. The aerial
imagery was acquired during leaf-on conditions in May 2011 as
part of the regularly scheduled aerial survey, which is updated
every 3 years (Stößel 2009). To cover the entire test site, images
from two different flights both conducted on 7 May 2011 using
the same Vexcel UltraCamXp camera (Leberl et al. 2012) were
processed, resulting in a ground sampling distance of 0.20 m. For
both flights, imagery with along- and across-track overlaps of
75% and 30%, respectively, was recorded. This resulted in a total
set of 163 stereo images from six different flight lines (see Supple-
mentary Fig. S1b1). The data provided included both panchromatic
images (PAN) and PAN-sharpened multispectral images (blue,
green, red, and near infrared) of the same radiometric resolution
(12 bit).

To achieve canopy heights from the image-based 2.5D point
cloud, additional bare-earth height information was required.
An ALS-based DTM (1 m resolution; see Supplementary Fig. S1a1)
derived from a topographic mapping survey in 2009 with a last
return density of 1.37·m−2 was available for the test site. According
to the data provider, 95% of the last returns have a vertical accu-
racy of ≤0.16 m, and the horizontal accuracy is given as ±0.5 m.

3. Methods
In the following sections, we will describe the different pro-

cessing steps in detail: first, derivation of the remote-sensing
products, i.e., a dense point cloud, a CHM, and the orthoimagery;
second, calculation of explanatory variables for the inventory
plots; third, model development for the different inventory grid
densities and evaluation at the plot level; and finally, wall-to-wall
application of the models and evaluation at the stand level.

3.1. Derivation of remote-sensing products
We applied the SGM approach to compute a dense image-based

point cloud. This algorithm, developed by Hirschmüller (2008),
approximates a global cost minimization between corresponding
pixels in base and match images by minimizing matching costs,
which are aggregated along a certain number of 1D path direc-
tions through the image. Matching costs measure the dissimi-
larity between corresponding pixels, and disparity jumps are
penalized by additional costs. This induces smooth disparities
along the search path (Hirschmüller 2011). By these means, the
pixelwise SGM approach provides computation of dense point
clouds within reasonable run times on large images (Haala 2011).
SGM, as implemented in the Remote Sensing Software Package
Graz (RSG, version 7.41; see Joanneum Research (2014)) was used in
this study. The matching procedure in RSG is hierarchically struc-
tured as coarse to fine matching. An initial coarse, top-level dis-
parity is calculated based on the additional information from the
available ALS-based DTM, with consequent disparity calculations
on four image pyramid levels. The cost function implemented in
RSG and used in the current study compares two image patches
and is defined as the Hamming distance of the two census trans-
forms within 9 × 9 pixel windows on the epipolar-rectified images.

We used the panchromatic band of the digital stereo images for
the matching procedure. Due to the low across-track overlap of
the aerial images, we used only stereo-image pairs from the along-
track overlap for computation. In total, 308 stereo-image pairs
were selected for processing. From the dense matching with SGM,
we achieved a mean point density for the stereo-image pairs of
21.35 points·m−2. Aggregating the data from the overlapping stereo-
image pairs resulted in a final point cloud with a mean density of
103.65 points·m−2.

Using the image-based point heights, we computed a gridded
digital surface model (DSM) of 1 m spatial resolution, in accor-
dance with the DTM. The algorithm employed, implemented in
the software FUSION (McGaughey 2013), assigns the elevation of
the highest point within each 1 m × 1 m grid cell to the grid-cell
center. All points located more than 50 m above the DTM were
considered to be outliers and were eliminated. We applied a 3 × 3
median filter to the DSM, as a smoothed surface was essential for
the orthorectification of the multispectral aerial images to pre-
vent blurred orthoimages. We combined all single orthoimages
into one mosaic using most-nadir seamlines and resampled the
image to 1 m resolution to coincide with the resolution of the DSM
(see Supplementary Fig. S1d1). To ensure that no systematic verti-
cal deviation existed between the image-based heights and the
ALS-based DTM, we computed the mean height difference be-
tween DSM and DTM heights for nine street polygons in the test
site. The mean deviation for these control polygons was 0.17 m
(standard deviation (SD), 0.29 m), which we consider to be accept-
able for the purpose of our study.

Additionally, the original image-based point cloud was normal-
ized by subtracting the ALS-based DTM heights; again, we elimi-
nated all points located more than 50 m above the DTM as they
were considered outliers. Using the normalized point cloud, we
computed a gridded CHM (see Supplementary Fig. S1c1) of 1 m
spatial resolution. For consistency, we applied the same method
as for the DSM computation.

3.2. Calculation of explanatory variables for the inventory
plots

Based on these derived remote-sensing products, a total of
67 explanatory variables were computed for each of the 500 m2

inventory plots (see, for example, extracted 2.5D point cloud for
one inventory plot in Supplementary Fig. S21). A list of all variables
including a concise explanation of the computation is provided in
Supplementary Table S11.

The FUSION cloudmetrics command was used for the calcula-
tion of the point-cloud variables. For a detailed description of the

Table 2. Radii and DBH thresholds for
the concentric circles assembling a cir-
cular inventory sample plot.

Circle
No.

Radius
(m)

Area
(m2)

DBH
(cm)

1 2.82 25 <12
2 6.31 125 12–29.9
3 12.62 500 ≥30

Note: DBH, diameter at breast height.
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equations implemented, please refer to McGaughey (2013). In ac-
cordance with Nilsson (1996) and Næsset (2002), all height mea-
surements below 2 m were not considered in the calculation to
exclude noncanopy measurements (e.g., points representing the
ground, stones, or shrubs). For the extraction of variables from
the gridded CHM and the orthoimage, we developed our own
software routines. Prior to conducting any further calculations,
the 67 explanatory variables were centered and scaled so that all
predictors had a zero mean and a common standard deviation of
one (Kuhn and Johnson 2013).

According to White et al. (2013a), multicollinearity among ex-
planatory variables can result in unstable predictions. Therefore,
we employed correlation analysis to identify potential linear rela-
tionships between the extracted variables. Pairwise correlations
were computed for all variables, and the resulting correlation
matrix was visually examined using the corrplot R package (Wei
2013). Here, each pairwise correlation is colored according to its
magnitude, and the predictors are grouped into “clusters” of col-
linearity using the hierarchical clustering approach described in
Everitt et al. (2011).

Consequently, the explanatory variables were subdivided into
the following groups:

(1) 26 height (H) metrics calculated from the point clouds: mini-
mum, maximum, mean, mode, percentile values (1st, 5th,
10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th,
95th, and 99th), and proportion values for various height
strata (0–5 m, 5–10 m, 10–15 m, 15–20 m, 20–30 m, 30–40 m,
and 40–50 m);

(2) five variability (V) metrics based on the point clouds: canopy-
relief ratio, absolute average deviation, L-moment coefficient
of variation, L-moment skewness, and L-moment kurtosis;

(3) 10 canopy cover (CC) metrics derived from the point clouds
and the CHM: ratios of either points or pixels above certain
height thresholds (points: 2 m, mean, and mode; CHM: 2 m,
5 m, 10 m, 15 m, 20 m, 30 m, and 40 m);

(4) 26 spectral (SP) metrics derived from the orthoimage: mean
and standard deviation for all bands (blue, green, red, and
near infrared) and for the artificial normalized-difference
vegetation index (NDVI) layer and texture metrics (contrast,
correlation, energy, and homogeneity) extracted from the
grey-level co-occurrence matrices (GLCM; averaged for the
four directions 0°, 45°, 90°, and 135°) for all bands, in accor-
dance with Haralick et al. (1973).

3.3. Model development for the different inventory grid
densities and evaluation at the plot level

The explanatory variables derived from the aerial stereo images
are highly prone to multicollinearity. We tried to overcome the mod-
eling problems related to that issue by implementing two different
approaches for the estimation of the GS, namely, the (parametric)
ordinary least squares linear regression model (lm), with an associ-
ated feature selection, and the (nonparametric) random forests (rf)
approach. We developed our modeling procedure in R (version 3.0.1,
64 bit), an open-source statistical software (R Core Team 2013), and

used the packages caret (Kuhn 2013) and bootStepAIC (Rizopoulos
2009) to implement the different modeling steps.

Resampling methods such as cross-validation can be used to
produce appropriate estimates of model performance. As suggested
by Kuhn and Johnson (2013), we applied 10-fold cross-validation
repeated five times so that 50 different held-out sets were used to
assess the model performance. Kuhn and Johnson (2013) stated
that repeating cross-validation can be favorable to effectively in-
crease the precision of model estimates. To determine the estima-
tion precision and accuracy of the different models examined in
this study, the root mean squared error (RMSE) and bias were
calculated for k sets of held-out samples, referred to as folds f
(eqs. 1 and 2; in accordance with Straub et al. 2010). The resulting
figures, i.e., the RMSEf and biasf values for the 50 folds, were then
aggregated to mean values, i.e., the RMSE and bias (absolute and
relative), which correspond to the repeated cross-validation esti-
mates of model performance (eqs. 3–6).

(1) RMSE f � ��i�1

n
(yi � ŷi)

2

n

(2) bias f �
�i�1

n
(yi � ŷi)

n

(3) RMSE �
�j�1

k
RMSE f , j

k

(4) RMSE (%) �
RMSE

mean (ȳf)
× 100

(5) bias �
�j�1

k
bias f , j

k

(6) bias (%) �
bias

mean (ȳf)
× 100

Here, yi is the observed value and ŷi is the predicted value for the
ith of n sample plots in one of the k held-out sets and ȳf is the mean
of n observed values in that held-out set.

3.3.1. Ordinary least squares linear regression model
Considering lm, linear relationships were used to predict the

GS. In addition, we tested exponential relationships for modeling.
However, using these for modeling did not perform better with
respect to the cross-validated RMSEs; therefore, linear additive
models were ultimately selected for use in this study (eq. 7).

(7) GS � �0 � �1X1 � �2X2 � … � �nXn � �

Table 3. Descriptive statistics calculated from the 1875 field inventory plots gathered by the Bavarian
State Forest Enterprise in the Steigerwald test site and used to train the various models investigated in
this study: mean age of overstory trees (age), dominant tree height (Hdom), basal area (BA), and growing
stock (GS).

Forest attribute Minimum 1st quartile Median 3rd quartile Maximum Mean SD

Age (years) 3.0 62.0 104.0 138.0 230.0 100.6 44.9
Hdom (m) 0.0 24.3 27.8 31.2 43.0 27.2 6.3
BA (m2·ha−1) 0.0 22.3 28.6 35.7 92.0 29.2 10.9
GS (m2·ha−1) 0.0 208.2 294.7 382.6 1075.5 297.9 137.5

Note: The minimum values of 0.0 were recorded in areas with stocking consisting only of trees with height <1.3 m
(DBH), which existed at some inventory plots. SD, standard deviation.
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where �i are the unknown regression coefficients, Xi are the inde-
pendent variables derived from the remote-sensing data, and � is
the error term.

Feature selection was constructed as a two-phase procedure,
and the variable groups described in section 3.2 were used. The H
metrics were tested first because previous correlation analysis
indicated that these variables had the highest predictive potential.

Therefore, in the first phase, the initial model was built by
evaluating each H metric separately as the sole explanatory vari-
able for the response variable GS. The model with the smallest
RMSE was chosen as the best of these models, calculated as shown
in eq. 3. Next, each possible combination of a V metric and a CC
metric, together with the previously selected H metric, was used
to create a model. Here again, the best-performing model with
respect to the RMSE was selected. Finally, this variable set, i.e., the
“best” H metric and the “best” combination of structural metrics
(one V metric and one CC metric), was integrated with each of the
SP metrics separately to find the best model. Therefore, the final
selection is parsimonious as it consists of exactly one explanatory
variable from each of the four groups.

In the second phase, the statistical significance of each of the
selected predictor variables was evaluated via a bootstrapped ap-
plication of the stepAIC algorithm (R package MASS; Venables
and Ripley 2007). Using bootStepAIC (Rizopoulos 2009), the final
model from phase one was refitted to 100 bootstraps from all
sample plots, and a subsequent stepwise regression (direction:
both; penalty criterion: BIC) was performed on each bootstrap. In
accordance with Austin and Tu (2004), the results from the boot-
straps were summarized, and only explanatory variables with sta-
tistical significance (� = 0.01) were chosen for inclusion in the final
linear model.

3.3.2 Random forests
The rf approach, a popular ensemble regression tree algorithm

first published by Breiman (2001), was applied as the nonparamet-
ric modeling approach. This technique overcomes the problems
of multidimensionality and multicollinearity. In rf modeling, dif-
ferent regression trees are built based on random subsets of the
available data, and a subsequent majority vote of these decision
trees is used to form the final regression model. Detailed descrip-
tions of rf modeling can be found in Genuer et al. (2008) and
Hastie et al. (2009).

The modeling procedure was implemented in caret, which
makes use of the package functionalities of randomForest (Liaw
and Wiener 2002). We followed the recommendation of Kuhn and
Johnson (2013) with regard to the estimation procedure and fixed
the number of regression trees for the forest (ntree) at 1000, which
gives a good balance between computational expense and model
performance. Previous testing using a larger number of decision
trees did not gain higher model accuracies.

The number of variables randomly selected from the total set P
(here 67 variables) at each node (commonly referred to as mtry) is
the tuning parameter used to optimize the performance of the rf
model. The rf models built with various values for mtry ranging
from 2 to P did not show substantial differences in terms of the
RMSEs achieved. Due to this and the fact that optimization runs
for mtry are computationally intensive, we used a setting of mtry =
P/3 for rf in regression mode, as recommended by Breiman (2001).

3.3.3. Systematic reduction of the number of inventory plots used
to train the model

To investigate the impact that varying amounts of training data
had on model performance, the original sample grid (200 m ×
200 m) was systematically reduced in three iterative steps. In each
of the iterative steps, every second inventory plot was eliminated
from the previous grid. Thus, four different training data sets, i.e.,
inventory grid densities, were created. Examples of each of these

grids for a small part of the test site are shown in Fig. 2. Hence-
forth, these grids will be referred to as the following:

– grid 1: 200 m × 200 m, original sample grid comprising all
inventory plots within the test site (1875 plots);

– grid 2: 282.8 m × 282.8 m, remaining inventory plots after the
first reduction step, i.e., every second inventory plot from
grid 1 was removed (50% of the original sample, 937 plots);

– grid 3: 400 m × 400 m, remaining inventory plots after the
second reduction step, i.e., every second inventory plot from
grid 2 was removed (25% of the original sample, 461 plots);

– grid 4: 565.7 m × 565.7 m, remaining inventory plots after the
final reduction step, i.e., every second inventory plot from
grid 3 was removed (12% of the original sample, 226 plots).

3.3.4. Comparison of different modeling approaches and
inventory grid densities

In total, the following seven different models were constructed
using the two modeling approaches (lm and rf) described above:

– lm_best_H: only the H metric with the best predictive perfor-
mance was used;

– lm_best_H_V_CC: the selected H metric and the “best” com-
bination of one V metric and one CC metric were used;

– lm_best_H_V_CC_SP: the “best” metric from each of the four
different groups was used;

– rf_best_H_V_CC_SP: only the “best” predictors (those used in
the lm_best_H_V_CC_SP model) were included in the rf mod-
eling process;

– rf_all_H: all H metrics were used in the rf modeling process;
– rf_all_H_V_CC: all H metrics together with all V and CC met-

rics were used;
– rf_all_H_V_CC_SP: all explanatory variables (H, V, CC, and SP)

were used in the rf model-building process.

Finally, each model was trained using the field data from each
of the four inventory grids described above, resulting in 28 differ-
ent models. For comparison purposes, the RMSE and bias values
from the resampling procedure (both the results for the 50 differ-
ent held-out sets and their arithmetic means) were considered.

3.4. Wall-to-wall mapping and stand-level evaluation
As recommended by, e.g., Næsset (2002), Breidenbach et al. (2010),

Woods et al. (2011), and White et al. (2013a), the cell size used for
predictive modeling in a wall-to-wall manner should coincide
with the ground inventory plot size. To meet this requirement,
the entire test site was subdivided into contiguous 500 m2 hexa-
gons (see Fig. 6a), which were used as the basic prediction units.
The same metrics calculated for the inventory plots were gener-
ated for each prediction unit.

To predict the GS of the entire forest area, each of the different
regression models was applied to each 500 m2 prediction unit
in the test site. Subsequently, the hexagons were intersected with
the stand geometries. Stand-level GS was determined by taking
the arithmetic mean of the predicted GSs from all of the predic-
tion units located completely within the corresponding stand
boundary.

For the accuracy assessment at the forest stand level, all stands
containing at least five inventory plots (94 in total) were taken
into consideration. These stands had a mean size of 32.0 ha (SD:
11.7 ha), and the observed GS, derived as the mean from the ter-
restrial inventory plots, ranged from 129.6 to 499.0 m3·ha−1, with
an arithmetic mean of 316.4 m3·ha−1 (SD: 70.0 m3·ha−1). As in the
plot-level evaluation, the RMSE and bias were calculated at the
stand level for each of the different combinations of model and
inventory grids, and the results were compared.
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4. Results

4.1. Comparison of the different inventory grids
Figure 3 depicts the GS distribution of each of the four training

data sets (grids 1–4). The distributions of GSs calculated from the
four different sets of inventory plots had mean (SD) of 297.9 (137.5),
296.6 (141.1), 294.9 (146.8), and 280.3 (131.9) m3·ha−1 for grids 1,
2, 3, and 4, respectively. Several outliers with GS values above
650 m3·ha−1 can be observed in Fig. 3. Two inventory plots even
had GSs of more than 1000 m3·ha−1. The outliers themselves are
distributed similarly across the first three inventory plot layouts.
In the least dense inventory grid (12% of the original number of
plots), only two outliers remain, thus accounting, at least in part,
for the lower mean GS. Nonetheless, the boxplots clearly show
that, at least in our test site, even a sample of inventory plots in
which each plot represents an area of 32 ha (grid 4) can provide a
reasonable characterization of the GS. To prove this statistically, a
Kruskal–Wallis rank sum test was applied to compare the distri-
butions from grids 1, 2, 3, and 4, as the normal distribution pre-
requisite for ordinary ANOVA was not fulfilled for grids 1, 2, and 3
(test results are given in the supplementary material1). The results
of this test show that the four different grids do not differ signif-
icantly.

4.2. Model building and plot-level evaluation
Table 4 shows the absolute and relative RMSE and bias as ob-

tained from the 10-fold cross-validation repeated five times at the
plot level for each of the different modeling approaches combined
with each of the different inventory grids. When all models and
all grids were considered, the estimations were unbiased, and the
relative cross-validated RMSE at the plot level ranged from 30.92%
to 36.02% (Table 4).

In the lm modeling procedure, the explanatory variable E.MEAN
(mean height calculated from the image-based point cloud) re-
sulted in the lowest RMSE of all H metrics tested when using grid 1
as training data. Therefore, E.MEAN was selected for inclusion in
the final lm_best_H model (RMSE: 32.50%). When evaluating this
selected H metric together with the structural metrics, E.LSKEW
(L-moment skewness based on the point cloud) as the “best” V
metric and E.CC_MEAN (ratio of all points above the mean height)
as the “best” CC metric were added to the model lm_best_H_V_CC
(RMSE: 31.86%). In the final selection, MeanNDVI (mean value of
the NDVI) as the “best” SP metric was included to the model
lm_best_H_V_CC_SP (RMSE: 31.27%). The selected predictors from
the four groups of explanatory variables proved statistically sig-
nificant in the bootStepAIC algorithm; therefore, all of them re-
mained in the final model.

For the rf models, the performance of the rf_best_H_V_CC_SP
model (relative RMSE: 32.55%) was inferior to that of the corre-
sponding lm_best_H_V_CC_SP model (relative RMSE: 31.27%). The
models rf_all_H and rf_all_H_V_CC yielded relative RMSEs of
32.42% and 32.31%, thus not outperforming the linear models with
feature selection. However, the rf_all_H_V_CC_SP model showed
the best performance when applied to grid 1, where it achieved a
relative RMSE of 30.92%. The explanatory variables MeanNDVI,
E.MEAN, and cc_15m (ratio of all pixels above 15 m calculated from

Fig. 2. Systematic reduction in inventory plot density used in this
study to test the effect of different sampling densities. Grid density
depicted here for a small section of the test site. (a) Full set of actual
inventory plots, located based on a 200 m × 200 m grid, each plot
represents 4 ha (grid 1). (b) First reduction step, each inventory plot
represents 8 ha (grid 2). (c) Second reduction step, each inventory
plot represents 16 ha (grid 3). (d) Final reduction step, plots are
arranged on a 565.7 m × 565.7 m grid, each represents 32 ha (grid 4).
The background image (CIR-orthoimage) illustrates the
heterogeneity of the forest conditions within the Steigerwald test
site. Note that this figure is provided in color online.
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the CHM with 1 m spatial resolution) yielded the highest impor-
tance scores in that particular rf model.

For all models, the RMSE values, in general, increased slightly as
the training sample grid density decreased (i.e., from grid 1 to
grid 3). However, for grid 4, the absolute RMSE also decreased

somewhat, which could be due to the fact that the training data in
grid 4 were less influenced by outliers, as explained in section 4.1
and illustrated in Fig. 3. Due to the lower mean GS (280.3 m3·ha−1)
obtained using the inventory plots in grid 4, this effect is not
reflected in the relative RMSE.

Figure 4 displays the results from the resampling process, i.e.,
the calculated RMSEf and biasf values from all 50 sets of held-out
samples, for the modeling approaches lm_best_H_V_CC_SP and
rf_all_H_V_CC_SP (the plots for all different modeling approaches
are depicted in Supplementary Fig. S31). The boxplots clearly show
that the distribution of the 50 RMSEf and biasf values widened
when moving from grid 1 to grid 4. Nonetheless, the medians are
similar. Scatterplots of the predicted vs. the observed GS at the
plot level are shown in Fig. 5 for the models lm_best_H_V_CC_SP
and rf_all_H_V_CC_SP (see Supplementary Fig. S41 for all models).
The scatterplots illustrate that, in all cases, the deviations from
the 1:1 line increased with higher GS values. Furthermore, con-
cerning the inventory plots with high GS values (previously de-
scribed as outliers with more than 650 m3·ha−1; see Fig. 3), a
systematic underestimation can be observed irrespective of the
model applied. Nevertheless, the 1:1 line and the fitted linear
trend line matched well for all models. Thus, a reasonable rela-
tionship between the predicted and observed values was obtained
with all models for the entire range of presented GSs.

4.3. Wall-to-wall mapping and stand-level evaluation
Following model building at the plot level, the GS was predicted

for each of the hexagonal prediction units using each combina-
tion of the different models and inventory grids. The results of
this wall-to-wall mapping process is exemplarily shown in Fig. 6
for the rf_all_H_V_CC_SP model applied to grid 1 for a subset of

Fig. 3. Boxplots displaying the sample distribution of the growing
stock (GS; m3·ha−1) calculated using data from the four different
inventory grids. The width of the boxes indicates the number of
inventory plots within each sample. Two inventory plots had GS
values of more than 1000 m3·ha−1; one of these sites is located
within a long-term forest growth test site dominated by beech,
whereas the other one is part of an old-growth forest stand where
very little harvesting takes place.

Table 4. Absolute and relative RMSE and bias as obtained from the
10-fold cross-validation (repeated five times) for each combination of
the various modeling approaches and inventory grid densities inves-
tigated in this study.

Model Grid
RMSE
(m3·ha−1)

RMSE
(%)

Bias
(m3·ha−1)

Bias
(%)

lm_best_H 1 96.83 32.50 0.01 0.00
2 100.50 33.88 0.02 0.01
3 105.00 35.61 0.04 0.01
4 99.22 35.37 0.13 0.05

lm_best_H_V_CC 1 94.90 31.86 −0.01 0.00
2 98.47 33.20 −0.06 −0.02
3 103.20 34.99 0.06 0.02
4 98.03 34.95 −0.06 −0.02

lm_best_H_V_CC_SP 1 93.15 31.27 0.00 0.00
2 97.10 32.74 −0.09 −0.03
3 101.80 34.52 0.08 0.03
4 96.78 34.50 −0.01 0.00

rf_best_H_V_CC_SP 1 96.96 32.55 −0.32 −0.11
2 100.30 33.82 −0.53 −0.18
3 105.70 35.84 −0.04 −0.01
4 98.12 34.98 0.33 0.12

rf_all_H 1 96.57 32.42 −1.79 −0.60
2 101.80 34.32 −2.64 −0.89
3 106.20 36.02 −1.82 −0.62
4 100.20 35.75 −0.83 −0.30

rf_all_H_V_CC 1 96.26 32.31 −1.96 −0.66
2 101.40 34.19 −2.82 −0.95
3 105.40 35.75 −2.41 −0.82
4 99.87 35.63 −1.32 −0.47

rf_all_H_V_CC_SP 1 92.10 30.92 −1.39 −0.46
2 98.11 33.08 −1.72 −0.58
3 104.90 35.58 −2.62 −0.89
4 99.12 35.36 −0.93 −0.33

Note: All data presented were calculated at the inventory plot level.

Fig. 4. Distribution of the absolute RMSEf and biasf values, as
obtained from the 50 held-out samples of the 10-fold cross-validation
(repeated five times). Boxplots are given for the modeling
approaches lm_best_H_V_CC_SP and rf_all_H_V_CC_SP for each of
the four inventory grids tested. In Supplementary Fig. S31, the
boxplots for all different modeling approaches are depicted.
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the study area (the same map extent as depicted in Fig. 2). Super-
imposed over this result in black lines are the manually delin-
eated forest stand boundaries used for forest management.

The color-coded map (Fig. 6a) illustrates the magnitude of pre-
dicted GSs for the prediction units and shows the variability even
within the different forest stands. Yet, in general, a causal connec-
tion between the predicted GSs for the prediction units and the
manually delineated forest stands is obvious. Figure 6b depicts the
aggregated GS estimates for the different stands obtained by av-
eraging the predictions from the basic subunits within each stand
region.

The accuracy assessment at the stand level resulted in absolute
RMSE values ranging from 43.88 m3·ha−1 to 49.76 m3·ha−1 and
relative RMSEs ranging from 13.87% to 15.73% (Table 5). Compar-
ing the different models, no major deviations were detected. As
further shown in Table 5, in some cases, the aggregated estima-
tions at the stand level show a minor prediction bias ranging from
−3.74% to 2.71%. For all modeling approaches, the bias was nega-
tive for grids 1, 2, and 3. However, using the models based on the
grid 4 data only, positive biased predictions at the stand level were
observed. This indicates an overestimation when the first three
grids were used and an underestimation using grid 4 at the stand
level.

The scatterplots in Fig. 7 show the predicted vs. the observed
GS values at the stand level for the modeling approaches
lm_best_H_V_CC_SP and rf_all_H_V_CC_SP (see Supplementary
Fig. S51 for all models). In comparison with the plot-level estima-
tion (Fig. 5; Supplementary Fig. S41), the amount of scatter re-
duced considerably for all model–grid combinations. In general,
the scatter was similar for all models and all grids. Only for the rf
models applied to grid 4, some saturation effects were visible in
stands with more than 400 m3·ha−1 of observed GS. To illustrate
possible deviations of the predicted vs. the observed GSs at the

stand level from the 1:1 line, we added linear trend lines to the
scatterplots. Overall, the two lines matched well for all models,
indicating no systematic shift in predicted GSs.

5. Discussion

5.1. Image-based height data to describe the canopy surface
Very dense point clouds with more than 100 measurements·m−2

were obtained from the stereo images using the SGM approach,
thus providing a detailed characterization of the forest canopy
surface (see Supplementary Fig. S21). Visual examination of the
2.5D data revealed that the pixel-based SGM even produced such
dense measurements in regions with low image texture, e.g.,
shaded areas at forest stand boundaries. We regard this as an
advantage over conventional feature- and area-based matching
algorithms, e.g., normalized cross-correlation (NCC). However, we
agree with White et al. (2013b) that further research is still neces-
sary, including investigations in a variety of forest types with a
diversity of stand conditions, to give a reliable recommendation
concerning the performance of different matching algorithms.
Up to now, this has largely been evaluated only for either urban or
agricultural landscapes, for example, in the benchmark study ini-
tiated by the EuroSDR (Haala 2013). That study used aerial imagery
acquired especially for research purposes, i.e., with high across-
track overlaps of more than 60%. Studies using such specialized
and highly targeted datasets are not necessarily comparable to
studies such as ours, which make use of “off-the-shelf” imagery
available from the national surveying administrations in many
European countries. To fully and effectively investigate the feasi-
bility of these datasets for further operational usage, we believe
that a comprehensive assessment of matching algorithms in var-
ious forest areas with stereo imagery acquired by official and
regular aerial surveys is necessary.

Fig. 5. Predicted vs. observed growing stock (GS; m3·ha−1) at the plot level, as obtained from the 50 held-outs of the 10-fold cross-validation
(repeated five times). Linear trend lines are given as dashed (blue online) lines, and the 1:1 lines are given as solid (red online). Scatterplots are
presented for the modeling approaches lm_best_H_V_CC_SP and rf_all_H_V_CC_SP for each of the four inventory grids tested. In Supplementary
Fig. S41, the scatterplots for all different combinations of modeling approach and inventory grid are depicted. Note that this figure is provided
in color online.
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5.2. Growing stock estimation at the plot and stand levels
In accordance with other recently published articles (Table 1),

our study confirms the great potential of stereo images and dense
image matching for estimating GS, at both the plot and stand
levels.

The feature selection procedure in the lm approach revealed
that the mean canopy height, computed from the image-based
point cloud, was the most important predictor of GS. This is in line
with the results obtained in various ALS studies (e.g., Straub et al.
(2010), Woods et al. (2011), and Hudak et al. (2012)), as well as with
the findings from recent studies dealing with image-based point
clouds (as listed in Table 1), where H metrics were also found to be
superior to other predictors. In the rf approach using all predictor
variables, the mean height yielded the second highest importance
score (after the mean NDVI, which was ranked as the most important
variable), which further underlines the importance of this variable in
estimation of GS. Concerning the derivation of the H metrics from
the image-based point cloud, we applied the 2 m height cutoff, in
accordance with many previous studies, e.g., Nilsson (1996), Næsset

(2002), Nurminen et al. (2013), and Vastaranta et al. (2013). However,
further research should reveal the most appropriate value for this
height threshold in more detail, especially concerning image-based
point clouds and different forest types.

We evaluated the additional gain in modeling performance
when including structural variables, i.e., variability and canopy
cover metrics, as explanatory variables to the models. In both the
lm and rf approaches, the RMSE could be reduced only marginally
by adding these variables. This suggests that for image-based data,
at least in our study, these metrics are not very contributive for
estimating GS, although the structural variables were tested sta-
tistically significant in the bootStepAIC algorithm within the lm
modeling procedure.

With regard to SP metrics, the NDVI appeared to be the most
important contributing predictor. It was chosen for inclusion in
the lm_best_H_V_CC_SP model and was also ranked as the most
important variable in the rf_all_H_V_CC_SP model. Moreover, in
both models, the NDVI was more important than any of the vari-
ous spectral texture metrics calculated based on the GLCM. By
adding metrics describing the spectral information from the im-
agery to the models, some measurable improvement in terms of
RMSE could be obtained, for both lm and rf. Therefore, based on
our investigation and considering the results from Straub et al.
(2013a), we conclude that the inclusion of spectral information
can slightly improve model performance when estimating GS.
However, it has to be kept in mind that differences in the spectral
information, e.g., the NDVI, can occur if datasets are acquired
during different phenological stages. In the case that only imag-
ery from different seasons is available for a specific test site, tests
are required to determine whether the resulting spectral data can
be combined or if it is advantageous to treat them separately.

Fig. 6. Illustration of the wall-to-wall mapping result (for the same
geographic extent presented in Fig. 2). (a) Predicted growing stock
(GS; m3·ha−1) estimates for the 500 m2 hexagons based on the model
rf_all_H_V_CC_SP, with all inventory plots (grid 1) in the test site.
The boundaries of the manually delineated forest stands (black
lines) are superimposed on the illustration. (b) Averaged GS
estimates for the stands based on the values from all hexagons that
are located completely within the stand polygons. Note that this
figure is provided in color online.

Table 5. Absolute and relative RMSE and bias for each combination of
the various modeling approaches and inventory grid densities inves-
tigated in this study.

Model Grid
RMSE
(m3·ha−1)

RMSE
(%)

Bias
(m3·ha−1)

Bias
(%)

lm_best_H 1 49.76 15.73 −8.00 −2.53
2 49.33 15.59 −4.85 −1.53
3 49.75 15.72 −8.62 −2.72
4 48.64 15.37 1.14 0.36

lm_best_H_V_CC 1 48.45 15.31 −7.63 −2.41
2 47.88 15.13 −3.83 −1.21
3 48.15 15.22 −7.28 −2.30
4 47.39 14.98 1.70 0.54

lm_best_H_V_CC_SP 1 47.45 14.99 −5.75 −1.82
2 46.96 14.84 −2.10 −0.66
3 47.28 14.94 −6.34 −2.00
4 46.70 14.76 2.85 0.90

rf_best_H_V_CC_SP 1 45.75 14.46 −5.72 −1.81
2 45.70 14.44 −1.50 −0.47
3 44.99 14.22 −4.15 −1.31
4 47.43 14.99 8.57 2.71

rf_all_H 1 45.94 14.52 −10.19 −3.22
2 45.26 14.30 −6.01 −1.90
3 44.74 14.14 −8.12 −2.56
4 46.90 14.82 6.62 2.09

rf_all_H_V_CC 1 46.33 14.64 −10.81 −3.41
2 45.61 14.41 −6.63 −2.09
3 45.62 14.41 −9.67 −3.06
4 46.68 14.75 5.66 1.79

rf_all_H_V_CC_SP 1 44.00 13.90 −10.30 −3.26
2 43.88 13.87 −8.15 −2.58
3 44.20 13.97 −11.83 −3.74
4 45.56 14.40 3.97 1.25

Note: Data presented here were calculated at the forest stand level for 94 val-
idation stands with an average stand size of 32 ha, each containing a minimum
of five terrestrial inventory plots.

120 Can. J. For. Res. Vol. 45, 2015

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
B

IB
L

IO
T

H
E

K
 D

E
R

 T
U

 M
U

E
N

C
H

E
N

 o
n 

12
/1

6/
14

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



Concerning the two different modeling approaches investi-
gated here — the lm and the rf models — our results do not clearly
favor one over the other. This is in line with the findings of Penner
et al. (2013), who compared parametric and nonparametric meth-
ods for forest-attribute estimation and stated that none of the
methods consistently yielded better results than the others. As an
example, the relative RMSEs obtained using grid 1 with both mod-
els were similar to one another (lm_best_H_V_CC_SP: 31.27%;
rf_all_H_V_CC_SP: 30.92%) and substantially smaller than the stan-
dard deviation for the GS (46.16%) of the observed values. In addi-
tion, the distribution of the RMSEf values obtained was similar for
both approaches, indicating a comparable level of estimation un-
certainty. In the recently published studies listed in Table 1, both
parametric and nonparametric regression approaches were im-
plemented. With respect to our findings, we assume that the dif-
ferences in the relative RMSEs presented in the last row of Table 1
were less influenced by the regression type applied than by the
forest structure and the distribution of the observed GS among
the different test sites (compare the mean and SD values in
Table 1). Vastaranta et al. (2013) and Nurminen et al. (2013) re-
ported RMSEs at the plot level of 24.5% and 22.62%, repectively, for
single-layered, even-aged, and conifer-dominated forests in Fin-
land, with similar means and SDs of the observed GS. Straub et al.
(2013a) achieved a relative RMSE of 37.89% at the plot level for a
multi-aged, multi-layered, and mixed-species forest in southern
Germany. Thus, although our results are more precise with regard
to the RMSE than those obtained by Straub et al. (2013a), they are
not as precise as those found in studies conducted in forests under
Nordic conditions. The test site used in our study is more homo-
geneous with respect to the species mixture and GS distribution
than the forest investigated in Straub et al. (2013a). This might

explain the lower RMSEs obtained in our study, the smallest of
which was 30.92% (obtained using the rf_all_H_V_CC_SP model
applied to grid 1).

Considering stand-level estimations, the RMSEs were reduced
by 50% compared with the plot-level estimations. To the best of
our knowledge, only Bohlin et al. (2012) have previously assessed
stand-level predictions of GS based on airborne stereo imagery. In
their study, conducted for a boreal test site with a mean stand size
of 2.8 ha, they achieved a stand-level RMSE of 13.1%, which is in
a similar range to the lowest RMSE of 13.87% obtained in our
study using the rf_all_H_V_CC_SP model. Moreover, Holmgren
and Jonsson (2004) and Straub et al. (2013b) evaluated models for
GS estimation at the stand level based on ALS data. In their stand-
level analysis in a conifer-dominated test site in Sweden (median
stand size: 1.3 ha), Holmgren and Jonsson (2004) achieved a RMSE
of 14.1%, and for a mixed, highly structured forest in Germany
(mean stand size: 10 ha), Straub et al. (2013b) obtained a RMSE of
17.14% in their stand-level analysis. However, as these studies were
conducted in different forest types and the stand sizes vary notice-
able from those of the Steigerwald test site, direct comparisons of
the resulting estimation errors are not possible. Nonetheless, the
reported RMSEs all ranged in a similar magnitude. These numbers
indicate that image-based estimations are competitive with ALS-
based estimations when used for stand-level prediction.

5.3. Number of inventory plots used as training data
With regard to the number of inventory plots used in the ABA,

Holopainen et al. (2013) stated that training data should represent
the entire population and cover the entire spectrum of variation
in it as much as possible. Considering the information presented
in the boxplots in Fig. 3 and the results from the Kruskal–Wallis

Fig. 7. Predicted vs. observed growing stock (GS; m3·ha−1) for 94 validation stands. All stands that fully contained a minimum of five
terrestrial inventory plots were used for the comparison. The predicted GS was derived by averaging the predictions from the hexagonal
prediction units within each stand unit. The observed GS was calculated as the arithmetic mean of the terrestrial inventory plot
measurements within each stand. Linear trend lines are given as dashed (blue online) lines, and the 1:1 lines are given as solid (red online).
Scatterplots are given for the modeling approaches lm_best_H_V_CC_SP and rf_all_H_V_CC_SP for each of the four inventory grids tested. In
Supplementary Fig. S51, the scatterplots for all different combinations of modeling approach and inventory grid are depicted. Note that this
figure is provided in color online.
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test, we conclude that even the minimum number of plots in
grid 4 fulfilled the requirements for a sound sampling of the GS in
the test site. This is in line with the model precision achieved at
the plot level, where the RMSEs obtained using each of the various
grids were in a similar range. However, as the boxplots shown in
Fig. 4 reveal, the uncertainty of the estimation increased when the
number of inventory plots used for training was reduced. This
finding was observed for both the lm and the rf models. Moreover,
our results from the wall-to-wall mapping and stand-level predic-
tion showed similar precision and accuracy for all grids. However,
the scatterplots in Fig. 7 indicate a saturation effect for stands
with more than 400 m3·ha−1 of observed GS, but this effect was
found only for the rf models applied to grid 4. Accordingly, with
regard to the rf models, the slight increase in the RMSE achieved
using grid 4 might be related to this effect. A possible explanation
for this phenomenon could be found in the disadvantages inher-
ent to all imputation methods, i.e., no extrapolation is possible
beyond the range of the training data; therefore, the predicted
values tend towards the center of the distribution (Penner et al.
2013).

The inventory grid 1 (200 m × 200 m) provided more than suffi-
cient information for modeling the GS in our test site. When
aiming at cost savings, thinning the inventory grid and, therefore,
reducing the amount of fieldwork necessary appears to be possi-
ble. Nevertheless, the results from the rf models based on grid 4
and used for stand-level prediction revealed that a sample of train-
ing data that is too small might possibly lead to prediction errors.

5.4. Operational implementation for forest management
The successful implementation of ALS data into operational

forest inventories and forest management activities has already
been described in several publications (e.g., Næsset 2007 and
Woods et al. 2011). However, it is commonly agreed that ALS
acquisitions are more expensive than aerial-image surveys (White
et al. 2013b). Therefore, exploring aerial imagery as an alternative
to ALS is a current and relevant research topic, particularly with
respect to the need for up-to-date and detailed spatially explicit
information for practicing sustainable forest management. This
demand is already high at present but will further increase with
advancing global change (Pretzsch et al. 2014). In our study, we
were able to demonstrate the feasibility of using standard aerial
images from regularly updated surveys in combination with an
existing ALS-based DTM to estimate the GS for a large forested
area. The resulting map depicts the GS for the entire forest based
on 500 m2 prediction units and provides valuable insights into the
distribution of GS across the forest. Furthermore, aggregation to
the stand level is feasible with a reasonable level of estimation
accuracy. As the estimation was successfully applied to a large test
site (77.5 km2), the presented method using regularly updated
aerial images might be a valuable contribution to meeting the
growing needs in forest inventory and planning.

6. Conclusions and outlook
This study underlined the high potential of existing aerial ste-

reo imagery for estimating growing stock. We successfully ap-
plied SGM to compute a dense point cloud characterizing the
canopy surface of a 77.5 km2 broadleaf-dominated forest in central
Europe. Our assessment of ordinary least squares linear regression
and random forests models revealed that both approaches are suit-
able for modeling, with slightly better precision achieved using the rf
model. In addition to explanatory variables obtained from the point
cloud and the CHM, spectral metrics derived from orthoimagery
contributed to the GS estimation. At both the plot and the stand
levels, very satisfying precisions and accuracies were obtained. More-
over, the results of our study demonstrated that a systematic reduc-
tion in the number of plots in the field inventory grid used for
training purposes did not substantially affect the model perfor-
mance. Our findings underline the potential of aerial stereo imagery

in combination with an existing ALS-based DTM as appropriate data
to support forest inventory and management.

In future research, we intend to assess the effectiveness of mod-
eling using regularly updated aerial image data to detect changes
in height and volume increment. Moreover, we will attempt to
estimate other forest attributes (e.g., Hdom, BA, stand-density in-
dex, etc.) using aerial imagery. We will further test and improve
the procedures presented here under various forest conditions in
central Europe, e.g., in areas with different topographic condi-
tions and species compositions. Finally, the transferability of the
model approaches presented here to adjacent forested areas with
similar conditions will be investigated, as this can support forest
management in areas where terrestrial forest inventory data are
lacking.
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